1.华南农业大学海洋学院,广东 广州 510642
2.华南农业大学中山创新中心,广东 中山 528400
3.广东省重要经济鱼类健康养殖工程技术研究中心 / 中山大学水生经济动物实验室,广东 广州510275
4.中山市三角镇农业服务中心,广东 中山 528445
5.中山市农业科技推广中心,广东 中山 528400
杨慧荣(1977年生),女;研究方向:水生经济动物繁殖与育种;E-mail:hry@scau.edu.cn
张淑瓶(1999年生),女;研究方向:水生经济动物分子生物学; E-mail:20232150017@stu.scau.edu.cn
网络出版日期:2024-09,
收稿日期:2024-06-12,
录用日期:2024-08-14
移动端阅览
杨慧荣, 张淑瓶, 曾芳, 等. 性别特异分子标记在斑鳢全雄育种上的应用[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-8.
YANG Huirong, ZHANG Shuping, ZENG Fang, et al. Application of sex-specific molecular markers for all-male breeding in
杨慧荣, 张淑瓶, 曾芳, 等. 性别特异分子标记在斑鳢全雄育种上的应用[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-8. DOI: 10.13471/j.cnki.acta.snus.ZR20240199.
YANG Huirong, ZHANG Shuping, ZENG Fang, et al. Application of sex-specific molecular markers for all-male breeding in
为了快速筛选培育出全雄斑鳢,本研究结合性别特异分子标记和三系配套育种技术,开发了全雄斑鳢的育种方法。将健康的七日龄斑鳢幼鱼随机分成3组进行雌化处理,在饲料中分别添加雌二醇(E2)100、300、600 mg/kg,饲养60 d。利用性别特异分子标记引物M12、P2鉴定筛选出决定型为XY型斑鳢,将XY型正常雄鱼与XY型伪雌鱼交配,获得的子代分为两组,一组为投喂正常饲料,另一组进行雌激素投喂,利用MX1和MX3引物筛选出YY超雄鱼,最后将YY超雄鱼和正常雌鱼作为亲本交配生产出全雄斑鳢子代。结果显示,600 mg/kg激素浓度组的性逆转率最高,达75%,从508尾经雌激素E2投喂的家系中筛选获得235尾具有XY基因型斑鳢。XY伪雌鱼与正常雄鱼交配获得的子代在2月龄时检测到22尾YY超雄鱼,7月龄时检测到14尾YY超雄鱼,筛选获得YY超雄鱼个体用于生产全雄子代。本研究方法显著提高了全雄化斑鳢育种效率,缩短了育种周期,展现出巨大的经济潜力和应用价值,为其他鱼类开展性别特别分子标记辅助育种提供借鉴或参考。
In order to rapidly select and breed all-male
Channa maculata
, this study developed a breeding method for all-male
Channa maculata
by combining sex-specific molecular markers and the three-lines breeding technology. Healthy seven-day-old
Channa maculata
juveniles were selected for feminization, and the juveniles were randomly divided into three groups, and 100, 300 and 600 mg/kg of estradiol hormone was added to the feed for 60 d. The sex-specific molecular markers M12 and P2 were used to identify and screen out
Channa maculata
with the determinant of XY type. Next, the offspring obtained by mating XY-type normal males with XY-type pseudo-females were divided into two groups, one was fed with normal feed, and the other was subjected to estradiol hormone treatment. YY super males were screened using MX1 and MX3 primers, and finally, YY super males and normal females were mated as parents to produce all-male
Channa maculata
offspring. The results showed that the 600 mg/kg hormone concentration group had the highest sex reversal rate of 75%, and 235
Channa maculata
with the XY genotype were screened from 508 lines fed with estrogen E2. 22 YY hypermales were detected at 2 months of age in the offspring obtained by mating XY pseudo-females with normal males and 14 YY hypermales were detected at 7 months of age. All the screened
Channa maculata
individuals were used to produce all-male offspring. The present method significantly improved the breeding efficiency and shortened the breeding cycle of
Channa maculata
, and showed a
great economic potential and application value, which can be used as a reference for gender-specific molecular marker-assisted breeding in other fish species.
斑鳢生长二态性性别特异性分子标记全雄育种
Channa maculatasexual growth dimorphismmolecular marker-assistedall-male fish breeding
刘改艳. 2011. 乌鳢、斑鳢性别差异SSR标记的初步筛选及其遗传多样性分析[D]. 上海: 上海海洋大学.
刘洋, 陈松林, 2023.鱼类性别特异分子标记筛选及分子性控育种研究现状与展望[J]. 水产学报, 47(11): 32-41.
鲁翠云, 匡友谊, 郑先虎, 等, 2019.水产动物分子标记辅助育种研究进展[J]. 水产学报, 43(1): 36-53.
欧密, 赵建, 罗青, 等, 2022.鳢性别控制育种及应用研究进展[J]. 中国农业科技导报, 24(2): 11-25.
文华康, 马志洲, 王河林, 2022. 新品种“雄鳢1号”与杂交鳢的生长对比研究[J]. 中国水产, (9): 73-74.
熊阳, 2022. XX伪雄黄颡鱼高效高质创制及X/Y精子差异表达基因鉴定[D]. 武汉: 华中农业大学.
AQUACULTURE GENOMICS G A B W, ABDELRAHMAN H, ElHADY M, et al, 2017. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research[J]. BMC Genomics, 18(1): 191.
CHEN C H, LI B J, GU X H, et al, 2019. Marker-assisted selection of YY supermales from a genetically improved farmed tilapia-derived strain[J]. Zool Res, 40(2): 108-112.
DU J, LIU Q, ZHENG Y, 2023. Screening and characterization of sex-specific sequences through 2b-RAD sequencing in American shad (Alosa sapidissima)[J]. PLoS One, 18(3): e0282165.
FJELLDAL P G, HANSEN T J, WARGELIUS A, et al, 2020. Development of supermale and all-male Atlantic salmon to research the vgll3 allele-puberty link[J]. BMC Genet, 21(1): 123.
GUIGUEN Y, FOSTIER A, PIFERRER F, et al., 2010. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish[J]. General and Comparative Endocrinology, 165(3): 352-366.
HASAN N, CHOUDHARY S, NAAZ N, et al, 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes[J]. J Genet Eng Biotechnol, 19(1): 128.
KOVÁCS B, EGEDI S, BÁRTFAI R, et al, 2000. Male-specific DNA markers from African catfish (Clarias gariepinus)[J]. Genetica, 110(3): 267-276.
KUSHANOV F N, TURAEV O S, ERNAZAROVA D K, et al, 2021. Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium spp.)[J]. Front Plant Sci, 12: 779386.
LEINONEN T, CANO J M, MERILÄ J, 2011. Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus[J]. Heredity, 106(2): 218-227.
LIAO X, XU G, CHEN S L, 2014. Molecular method for sex identification of half-smooth tongue sole (Cynoglossus semilaevis) using a novel sex-linked microsatellite marker[J]. Int J Mol Sci, 15(7): 12952-12958.
LIN H, ZHOU Z, ZHAO J, et al, 2021. Genome-wide association study identifies genomic loci of sex determination and gonadosomatic index traits in large yellow croaker (Larimichthys crocea)[J]. Mar Biotechnol, 23(1): 127-139.
LIU B H, ZHANG Y Q, MA K Y, et al, 2022. Identification of sex-specific markers and ZW-chromosome DNA clones from the genomic BAC library of the Chinese mitten crab Eriocheir sinensis[J]. Aquaculture, 560: 738576.
MAIR G C, ABUCAY J S, ABELLA T A, et al, 1997. Genetic manipulation of sex ratio for the large-scale production of all-male Tilapia Oreochromis niloticus[J]. Can J Fish Aquat Sci, 54(2): 396-404.
MAO H, CHEN K, ZHU X, et al, 2017. Identification of suitable reference genes for quantitative real-time PCR normalization in blotched snakehead Channa maculata[J]. J Fish Biol, 90(6): 2312-2322.
MUKAI K, HARA S, SAKIMA K, et al, 2022. Oxidative stress causes masculinization of genetically female medaka without elevating cortisol[J]. Front Endocrinol, 13: 878286.
NAKAMURA M, KOBAYASHI T, CHANG X T, et al, 1998. Gonadal sex differentiation in teleost fish[J]. J Exp Zool, 281(5): 362-372.
NINWICHIAN P, PEATMAN E, PERERA D, et al, 2012. Identification of a sex-linked marker for channel catfish[J]. Anim Genet, 43(4): 476-477.
OU M, CHEN K, GAO D, et al, 2020. Comparative transcriptome analysis on four types of gonadal tissues of blotched snakehead (Channa maculata)[J]. Comp Biochem Physiol Part D Genom Proteom, 35: 100708.
OU M, ZHAO J, LUO Q, et al, 2018. Characteristics of hybrids derived from Channa argus ♀ × Channa maculata ♂[J]. Aquaculture, 492: 349-356.
PIFERRER F, BLÁZQUEZ M, 2005. Aromatase distribution and regulation in fish[J]. Fish Physiology and Biochemistry, 31(2/3): 215-226.
ROSENTHAL G G, EVANS C S, 1998. Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size[J]. Proc Natl Acad Sci USA, 95(8): 4431-4436.
SONG L, WANG R, YANG X, et al, 2023. Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.)[J]. Agriculture, 13(3): 642.
VARELA E S, BEKAERT M, GANECO-KIRSCHNIK L N, et al, 2021. A high-density linkage map and sex-linked markers for the Amazon Tambaqui Colossoma macropomum[J]. BMC Genomics, 22(1): 709.
WANG D, MAO H L, CHEN H X, et al, 2009. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations[J]. Anim Genet, 40(6): 978-981.
YAMAMOTO T O, 1964. The problem of viability of YY zygotes in the medaka, oryzias latipes[J]. Genetics, 50(1): 45-58.
YASUDA N, GLOVER E I, PHILLIPS S M, et al, 2005. Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization[J]. J Appl Physiol, 99(3): 1085-1092.
ZHANG Q Q, WANG X B, LIU J X, 2019. Progress and prospects of sex determination and sex control in Chinese tongue sole Cynoglossus semilaevis[J]. Period Ocean Univ China, 49(10): 43-53.
ZHANG S Q, XIONG X M, SHI R H, et al, 2022. Screening and characterization of sex-specific markers for the hybrid (Megalobrama amblycephala ♀ × Ancherythroculter nigrocauda ♂) based on 2b-RAD and transcriptome sequencing[J]. Aquaculture, 548: 737704.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构