中山大学生态学院,广东 深圳 518107
廖慧璇(1988年生),女;研究方向:恢复生态学;E-mail:liaohuix5@mail.sysu.edu.cn
纸质出版日期:2024-11-25,
网络出版日期:2024-07-22,
收稿日期:2024-05-17,
录用日期:2024-05-29
移动端阅览
廖慧璇,薛亚林.功能性状与干旱下树木自然更新能力关系的meta分析[J].中山大学学报(自然科学版)(中英文),2024,63(06):122-131.
LIAO Huixuan,XUE Yalin.A meta analysis of the association between functional trait and tree regeneration capacity under drought[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):122-131.
廖慧璇,薛亚林.功能性状与干旱下树木自然更新能力关系的meta分析[J].中山大学学报(自然科学版)(中英文),2024,63(06):122-131. DOI: 10.13471/j.cnki.acta.snus.ZR20240160.
LIAO Huixuan,XUE Yalin.A meta analysis of the association between functional trait and tree regeneration capacity under drought[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):122-131. DOI: 10.13471/j.cnki.acta.snus.ZR20240160.
全球气候变化下极端干旱事件频发,对全球生态系统稳定造成了巨大挑战。森林在维持全球生态系统稳定方面发挥着不可替代的作用。由于不同乔木物种对干旱有不同程度的敏感性,特别是在自然更新阶段,不同物种种子产生、种子萌发、幼苗生长都对水分变化存在不同的敏感性,探讨影响种间敏感性差异的机制对预测森林对未来气候变化的响应具有重要意义。目前关于树木成体对干旱的响应已有众多实验性和整合性的定量研究,然而还未见关于树木自然更新对干旱响应的整合性研究。本研究采用meta分析手段,在全球范围内搜集野外观测和控制实验获得的树木种子产量、种子萌发率、幼苗出苗率和幼苗存活率等自然更新过程相关指标,定量评估干旱胁迫对不同物种自然更新的效应强度。结合树木的功能性状(包括叶片面积、叶片厚度、植株最大高度、根系深度、种子大小、比叶面积、气孔导度、P50和叶片水势),发掘不同物种干旱响应差异的潜在解释因子。结果表明,影响干旱胁迫下树木自然更新的功能性状在光合作用、叶片表型和种子大小之间存在相互协调关系,那些能够在降低水分散失的同时保证高光合速率或能够维持较快生长速率的树种将在干旱中保持较强的自我更新能力。本研究为不同树种功能性状对其干旱下自然更新的影响提供了整合性的证据,强调了考虑物种性状信息对全球气候变化下森林保育的重要意义。
More frequent and more extreme drought events under global change have posed severe threats to global ecosystems. Forests play an irreplaceable role in maintaining global ecosystem stability. Because different tree species show varying degrees of drought sensitivity, which is especially true at the early natural regeneration stage, where seed production, germination, and seedling growth of tree species strongly depend on water conditions, it is of profound significance to explore the underlying mechanisms of the intraspecific differences of species in response to drought. While numerous experimental and integrated studies have been conducted for adult tree responses to drought, integrated studies on the natural regeneration of trees are still lacking. In this study, a meta-analysis was conducted by collecting the data of regeneration-related indicators such as seed yield, seed germination, seedling emergence and seedling survival based on field observations and controlled experiments at the global scale. We quantified drought effects on the natural regeneration of different tree species and explored the explanatory potential of plant functional traits [i.e., leaf area, leaf thickness, plant height, root rooting depth, seed dry mass, specific leaf area (SLA), stomatal conductance, P50, leaf water potential] on the differential drought responses across species. Functional traits affecting natural regeneration of trees under drought stress showed a coordinated relationship among photosynthesis and leaf morphologies. The species that could reduce water loss while maintaining high photosynthetic rate tend to have a stronger regeneration capacity. This study provides integrative evidence of the effects of tree functional traits on natural regeneration under drought stress and highlights the importance of incorporating plant trait information in forest conservation under global climate change.
干旱自然更新树木功能性状meta分析
droughtregenerationtreetraitsmeta-analysis
张雅琪, 陈林, 庞丹波, 等, 2022. 土壤微生物群落对枯落物输入的响应[J]. 应用生态学报, 33(11): 2943-2953.
AFZAL A, DUIKER S W, WATSON J E, 2017. Leaf thickness to predict plant water status[J]. Biosyst Eng, 156: 148-156.
ALLEN C D, MACALADY A K, CHENCHOUNI H, et al, 2009. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. For Ecol Manag, 259(4): 660-684.
ANDERSON-TEIXEIRA K J, MILLER A D, MOHAN J E, et al, 2013. Altered dynamics of forest recovery under a changing climate[J]. Glob Change Biol, 19(7): 2001-2021.
ASHRAF M, HARRIS P J C, 2013. Photosynthesis under stressful environments: An overview[J]. Photosynthetica, 51(2): 163-190.
BADANO E, GUERRA-COSS F, GELVIZ M, et al, 2018. Functional responses of recently emerged seedlings of an endemic Mexican oak (Quercus eduardii) under climate change conditions[J]. Bot Sci, 96(4): 582.
BENNETT A C, McDOWELL N G, ALLEN C D, et al, 2015. Larger trees suffer most during drought in forests worldwide[J]. Nat Plants, 1: 15139.
BRIENEN R J W, PHILLIPS O L, FELDPAUSCH T R, et al, 2015. Long-term decline of the Amazon carbon sink[J]. Nature, 519(7543): 344-348.
BYKOVA O, CHUINE I, MORIN X, 2019. Highlighting the importance of water availability in reproductive processes to understand climate change impacts on plant biodiversity[J]. Perspect Plant Ecol Evol Syst, 37: 20-25.
CARÓN M M, de FRENNE P, BRUNET J, et al, 2015. Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides[J]. Plant Biol, 17(1): 52-62.
DAMOUR G, VANDAME M, URBAN L, 2009. Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance[J]. Tree Physiol, 29(5): 675-684.
DOBROWSKI S Z, SWANSON A K, ABATZOGLOU J T, et al, 2015. Forest structure and species traits mediate projected recruitment declines in western US tree species[J]. Glob Ecol Biogeogr, 24(7/8): 917-927.
EMERY N, COLLETTE J C, 2021. Drought stress affects the germination of four co-occurring Eucalyptus species from north-west New South Wales[J]. Aust J Bot, 69: 143-151.
FRANK D C, POULTER B, SAURER M, et al, 2015. Water-use efficiency and transpiration across European forests during the Anthropocene[J]. Nat Clim Change, 5: 579-583.
GAO R, SHI X, WANG J R, 2017. Comparative studies of the response of larch and birch seedlings from two origins to water deficit[J]. N Z J For Sci, 47(1): 14.
GARNIER S, GIORDANENGO E, SAATKAMP A, et al, 2021. Amplified drought induced by climate change reduces seedling emergence and increases seedling mortality for two Mediterranean perennial herbs[J]. Ecol Evol, 11(22): 16143-16152.
GAZOL A, CAMARERO J J, SANGÜESA-BARREDA G, et al, 2018. Post-drought resilience after forest die-off: Shifts in regeneration, composition, growth and productivity[J]. Front Plant Sci, 9: 1546.
GREENWOOD S, RUIZ-BENITO P, MARTÍNEZ-VILALTA J,et al, 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area[J]. Ecol Lett, 20(4): 539-553.
HEDGES L V, GUREVITCH J, CURTIS P S, 1999. The meta-analysis of response ratios in experimental ecology[J]. Ecol, 80(4): 1150-1156.
HERRERO A, ZAMORA R, 2014. Plant responses to extreme climatic events: A field test of resilience capacity at the southern range edge[J]. PLoS One, 9(1): e87842.
HU Y, XIANG W, SCHÄFER K V R, et al, 2022. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes[J]. Sci Total Environ, 828: 154517.
IRVINE J, LAW B E, ANTHONI P M, et al, 2002. Water limitations to carbon exchange in old-growth and young ponderosa pine stands[J]. Tree Physiol, 22(2/3): 189-196.
KHAN A, SHEN F, YANG L, et al, 2022. Limited acclimation in leaf morphology and anatomy to experimental drought in temperate forest species[J]. Biology, 11(8): 1186.
LAZARUS B E, CASTANHA C, GERMINO M J, et al, 2018. Growth strategies and threshold responses to water deficit modulate effects of warming on tree seedlings from forest to alpine[J]. J Ecol, 106(2): 571-585.
LLORET F, ESCUDERO A, IRIONDO J M, et al, 2012. Extreme climatic events and vegetation: The role of stabilizing processes[J]. Glob Change Biol, 18(3): 797-805.
MARTÍNEZ-VILALTA J, LLORET F, 2016. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics[J]. Glob Planet Change, 144: 94-108.
NARDINI A, PEDÀ G, La ROCCA N, 2012. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences[J]. N Phytol, 196(3): 788-798.
NIINEMETS Ü, 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 82(2): 453-469.
NOUVELLON Y, LACLAU J P, EPRON D, et al, 2009. Within-stand and seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo[J]. For Ecol Manag, 259(9): 1796-1807.
PHILLIPS O L, van der HEIJDEN G, LEWIS S L, et al, 2010. Drought–mortality relationships for tropical forests[J]. N Phytol, 187(3): 631-646.
POORTER L, MARKESTEIJN L, 2008. Seedling traits determine drought tolerance of tropical tree species[J]. Biotropica, 40(3): 321-331.
POZNER E, BAR-ON P, LIVNE-LUZON S, et al, 2022. A hidden mechanism of forest loss under climate change: The role of drought in eliminating forest regeneration at the edge of its distribution[J]. For Ecol Manag, 506: 119966.
RAMÍREZ-VALIENTE J, VALLADARES F, GIL L, et al, 2009. Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.)[J]. For Ecol Manag, 257(8): 1676-1683.
REDMOND M D, WEISBERG P J, COBB N S, et al, 2018. Woodland resilience to regional drought: Dominant controls on tree regeneration following overstorey mortality[J]. J Ecol, 106(2): 625-639.
SHRIVER R K, YACKULIC C B, BELL D M, et al, 2022. Dry forest decline is driven by both declining recruitment and increasing mortality in response to warm, dry conditions[J]. Glob Ecol Biogeogr, 31(11): 2259-2269.
STROMBERG J C, BOUDELL J A, 2013. Floods, drought, and seed mass of riparian plant species[J]. J Arid Environ, 97: 99-107.
SU J, FRIESS D A, GASPARATOS A, 2021. A meta-analysis of the ecological and economic outcomes of mangrove restoration[J]. Nat Commun, 12(1): 5050.
SUAREZ M L, KITZBERGER T, 2008. Recruitment patterns following a severe drought: Long-term compositional shifts in Patagonian forests[J]. Can J For Res, 38(12): 3002-3010.
URBIETA I, PÉREZ-RAMOS I, ZAVALA M, et al, 2008. Soil water content and emergence time control seedling establishment in three co-occurring Mediterranean oak species[J]. Can J For Res, 38: 2382-2393.
VALLADARES F, SÁNCHEZ-GÓMEZ D, 2006. Ecophysiological traits associated with drought in Mediterranean tree seedlings: Individual responses versus interspecific trends in eleven species[J]. Plant Biol, 8(5): 688-697.
VIECHTBAUER W, 2010. Conducting meta-analyses in R with the metafor package[J]. J Stat Softw, 36(3): 1-48.
WANG L, LI Q, COULTER J A, et al, 2020. Winter wheat yield and water use efficiency response to organic fertilization in Northern China: A meta-analysis[J]. Agric Water Manag, 229: 105934.
WANG X M, WANG X K, SU Y B, et al, 2019. Land pavement depresses photosynthesis in urban trees especially under drought stress[J]. Sci Total Environ, 653: 120-130.
ZHANG S, KANG H, YANG W, 2017. Climate change-induced water stress suppresses the regeneration of the critically endangered forest tree Nyssa yunnanensis[J]. PLoS One, 12(8): e0182012.
0
浏览量
96
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构