中山大学数学学院,广东 广州 510275
王子豪(1993年生),男;研究方向:计算系统生物学;E-mail:wangzih9@mail.sysu.edu.cn
张家军(1978年生),男;研究方向:计算系统生物学、生物信息学等;E-mail:zhjiajun@mail.sysu.edu.cn
纸质出版日期:2024-11-25,
网络出版日期:2024-08-27,
收稿日期:2024-04-10,
录用日期:2024-05-02
移动端阅览
王子豪,张圳泉,张家军.四维细胞核体调控基因表达的数学理论[J].中山大学学报(自然科学版)(中英文),2024,63(06):254-264.
WANG Zihao,ZHANG Zhenquan,ZHANG Jiajun.Mathematical theory of four-dimensional nucleome regulating gene expression[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):254-264.
王子豪,张圳泉,张家军.四维细胞核体调控基因表达的数学理论[J].中山大学学报(自然科学版)(中英文),2024,63(06):254-264. DOI: 10.13471/j.cnki.acta.snus.ZR20240112.
WANG Zihao,ZHANG Zhenquan,ZHANG Jiajun.Mathematical theory of four-dimensional nucleome regulating gene expression[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(06):254-264. DOI: 10.13471/j.cnki.acta.snus.ZR20240112.
多尺度三维基因组结构驱动基因表达和细胞命运决定. 尽管在一维线性基因组层面上的研究取得了显著进展,但三维空间基因组动态结构如何在功能上影响时空基因表达的变化仍不清楚. 近年来,测序技术和影像技术的发展,使得四维核体基因组学的研究取得一系列进展. 在本文中,讨论了三维基因组结构的多尺度性、其对基因表达的复杂调控以及时空动力学. 接着对这一复杂的染色质结构动力学、表观修饰动力学和基因表达动力学进行理论建模,提出了可预测的多尺度耦合系统的建模框架. 最后,讨论了未来关于四维核体动力学的研究方向.
The multiscale three-dimensional genome structure drives gene expression and cell-fate decision. Although significant progress has been made in the study of one-dimensional linear genomes, it is still unclear how the dynamic structure of three-dimensional spatial genomes affects spatiotemporal gene expression changes functionally. In recent years, the development of sequencing and imaging technologies has led to a series of advances in the study of four-dimensional nucleome genomics. In this review, we discuss the multiscale nature of the three-dimensional genome structure, its complex regulation of gene expression, and its spatiotemporal dynamics. Subsequently, we theoretically model this complex chromatin structure dynamics, epigenetic modification dynamics, and gene expression dynamics, and propose a predictive multiscale coupled modeling framework. Finally, we discuss future research directions on four-dimensional nucleome dynamics.
三维基因组基因表达染色质构象表观修饰基因调控
three-dimensional genomegene expressionchromatin conformationepigenetic modificationgene regulation
林达, 张斯姮, 张智慧, 等, 2020. 探索染色质三维构象的“工具箱”研究进展[J]. 中国科学: 生命科学, 50(5): 497-505.
章乐, 李鹏超, 赵竞天, 等, 2020. 基因组三维结构研究进展[J]. 中国科学: 生命科学, 50(5): 484-496.
ABDULLA A Z, SALARI H, TORTORA M M C, et al, 2023. 4D epigenomics: Deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling[J]. Curr Opin Genet Dev, 79: 102033.
ABOELNOUR E, BONEV B, 2021. Decoding the organization, dynamics, and function of the 4D genome [J]. Dev Cell, 56 (11): 1562-1573.
ALBERTS B, JOHNSON A, LEWIS J, et al, 2014. Molecular biology of the cell[M]. New York: Garland Science.
BARABÁSI A L, 2005. The origin of bursts and heavy tails in human dynamics[J]. Nature, 435(7039): 207-211.
BARBIERI M, CHOTALIA M, FRASER J, et al, 2012. Complexity of chromatin folding is captured by the strings and binders switch model[J]. Proc Natl Acad Sci, 109(40): 16173-16178.
BARTMAN C R, HSU S C, HSIUNG C C S, et al, 2016. Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping[J]. Mol Cell, 62(2): 237-247.
BENABDALLAH N S, WILLIAMSON I, ILLINGWORTH R S, et al, 2019. Decreased enhancer-promoter proximity accompanying enhancer activation [J]. Mol Cell, 76(3): 473-484.
BERRY S, DEAN C, HOWARD M, 2017. Slow chromatin dynamics allow polycomb target genes to filter fluctuations in transcription factor activity [J]. Cell Syst, 4(4): 445-457.
BIANCO S, CHIARIELLO A M, CONTE M, et al, 2020. Computational approaches from polymer physics to investigate chromatin folding[J]. Curr Opin Cell Biol, 64: 10-17.
BIANCO S, LUPIÁÑEZ D G, CHIARIELLO A M, et al, 2018. Polymer physics predicts the effects of structural variants on chromatin architecture[J]. Nat Genet, 50(5): 662-667.
BINTU B, MATEO L J, SU J H, et al, 2018. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells[J]. Science, 362(6413): eaau1783.
BLAKE W J, KARN M, CANTOR C R, et al, 2003. Noise in eukaryotic gene expression[J]. Nature, 422(6932): 633-637.
BOETTIGER A, MURPHY S, 2020. Advances in chromatin imaging at kilobase-scale resolution[J]. Trends Genet, 36(4): 273-287.
BOTHMA J P, GARCIA H G, ESPOSITO E, et al, 2014. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos[J]. Proc Natl Acad Sci, 111(29): 10598-10603.
BRÜECKNER D B, CHEN H, BARINOV L, et al, 2023. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome[J]. Science, 380(6652): 1357-1362.
BUCKLE A, BRACKLEY C A, BOYLE S, et al, 2018. Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci[J]. Mol Cell, 72(4): 786-797.
CESBRON F, OEHLER M, HA N, et al, 2015. Transcriptional refractoriness is dependent on core promoter architecture[J]. Nat Commun, 6: 6753.
CHEN H, LEVO M, BARINOV L, et al, 2018. Dynamic interplay between enhancer-promoter topology and gene activity[J]. Nat Genet, 50(9): 1296-1303.
CHEN W, GUILLAUME-GENTIL O, RAINER P Y, et al, 2022. Live-seq enables temporal transcriptomic recording of single cells[J]. Nature, 608(7924): 733-740.
CHO C Y, O’FARRELL P H, 2023. Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription[J]. Nat cCommun, 14(1): 4848.
CHUBB J R, TRCEK T, SHENOY S M, et al, 2006. Transcriptional pulsing of a developmental gene [J]. Curr Biol, 16(10): 1018-1025.
CISSE I I, IZEDDIN I, CAUSSE S Z, et al, 2013. Real-time dynamics of RNA polymerase II clustering in live human cells[J]. Science, 341(6146): 664-667.
CORRAL A, 2004. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes [J]. Phys Rev Lett, 92(10): 108501.
CORRIGAN A M, TUNNACLIFFE E, CANNON D, et al, 2016. A continuum model of transcriptional bursting[J]. eLife, 5: 13051.
COULON A, GANDRILLON O, BESLON G, 2010. On the spontaneous stochastic dynamics of a single gene: Complexity of the molecular interplay at the promoter[J]. BMC Syst Biol, 4(1): 2.
DAR R D, RAZOOKY B S, SINGH A, et al, 2012. Transcriptional burst frequency and burst size are equally modulated across the human genome[J]. Proc Natl Acad Sci, 109(43): 17454-17459.
DARBELLAY F, DUBOULE D, 2016. Topological domains, metagenes, and the emergence of pleiotropic regulations at Hox loci[J]. Curr Top Dev Biol, 116: 299-314.
DEKKER J, BELMONT A S, GUTTMAN M, et al, 2017. The 4D nucleome project[J]. Nature, 549(7671): 219-226.
DEKKER J, MISTELI T, 2015. Long-range chromatin interactions[J]. Cold Spring Harb Perspect Biol, 7(10): a019356.
DENG W, LEE J, WANG H, et al, 2012. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor[J]. Cell, 149(6): 1233-1244.
Di PIERRO M, CHENG R R, AIDEN E L, et al, 2017. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture[J]. Proc Natl Acad Sci, 114(46): 12126-12131.
DODD I B, MICHEELSEN M A, SNEPPEN K, et al, 2007. Theoretical analysis of epigenetic cell memory by nucleosome modification[J]. Cell, 129(4): 813-822. DOI M, EDWARDS S F,1988. The theory of polymer dynamics[M]. Oxford: Oxford University Press.
DONOVAN B T, HUYNH A, BALL D A, et al, 2019. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting[J]. EMBO J, 38(12): e100809.
FEMINO A M, FAY F S, FOGARTY K, et al, 1998. Visualization of single RNA transcripts in situ[J]. Science, 280(5363): 585-590.
FINN E H, PEGORARO G, BRANDÃO H B, et al, 2019. Extensive heterogeneity and intrinsic variation in spatial genome organization[J]. Cell, 176(6): 1502-1515.
FUDA N J, ARDEHALI M B, LIS J T, 2009. Defining mechanisms that regulate RNA polymerase II transcription in vivo[J]. Nature, 461(7261): 186-192.
FUDENBERG G, IMAKAEV M, LU C, et al, 2016. Formation of chromosomal domains by loop extrusion[J]. Cell Rep, 15(9): 2038-2049.
FUKAYA T, LIM B, LEVINE M, 2016. Enhancer control of transcriptional bursting[J]. Cell, 166(2): 358-368.
FURLONG E E M, LEVINE M, 2018. Developmental enhancers and chromosome topology[J]. Science, 361(6409): 1341-1345.
GHOSH S K, JOST D, 2018. How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes[J]. PLoS Comput Biol, 14(5): e1006159.
GIBNEY E R, NOLAN C M, 2010. Epigenetics and gene expression[J]. Heredity, 105(1): 4-13.
GOLDING I, PAULSSON J, ZAWILSKI S M, et al, 2005. Real-time kinetics of gene activity in individual bacteria[J]. Cell, 123(6): 1025-1036.
GUÉRIN T, BÉNICHOU O, VOITURIEZ R, 2012. Non-Markovian polymer reaction kinetics[J]. Nat Chem, 4(7): 568-573.
HALFON M S, 2020. Silencers, enhancers, and the multifunctional regulatory genome[J]. Trends Genet, 36(3): 149-151.
HANSEN A S, PUSTOVA I, CATTOGLIO C, et al, 2017. CTCF and cohesin regulate chromatin loop stability with distinct dynamics[J]. eLife, 6: e25776.
HARPER C V, FINKENSTÄDT B, WOODCOCK D J, et al, 2011. Dynamic analysis of stochastic transcription cycles[J]. PLoS Biol, 9(4): e1000607.
HEIST T, FUKAYA T, LEVINE M, 2019. Large distances separate coregulated genes in living Drosophila embryos[J]. Proc Natl Acad Sci, 116(30): 15062-15067.
HENRIQUES T, GILCHRIST D A, NECHAEV S, et al, 2013. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals[J]. Mol Cell, 52(4): 517-528.
HUANG L, YUAN Z, LIU P, et al, 2014. Feedback-induced counterintuitive correlations of gene expression noise with bursting kinetics[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 90(5): 052702.
HUANG L, YUAN Z, LIU P, et al, 2015. Effects of promoter leakage on dynamics of gene expression[J]. BMC Syst Biol, 9: 16.
JOHNSTONE C P, WANG N B, SEVIER S A, et al, 2020. Understanding and engineering chromatin as a dynamical system across length and timescales[J]. Cell Syst, 11(5): 424-448.
JONES D L, BREWSTER R C, PHILLIPS R, 2014. Promoter architecture dictates cell-to-cell variability in gene expression[J]. Science, 346(6216): 1533-1536.
JOST D, VAILLANT C, 2018. Epigenomics in 3D: Importance of long-range spreading and specific interactions in epigenomic maintenance[J]. Nucleic Acids Res, 46(5): 2252-2264.
JOST D, VAILLANT C, MEISTER P, 2017. Coupling 1D modifications and 3D nuclear organization: Data, models and function [J]. Curr Opin Cell Biol, 44: 20-27.
KIM S, PIQUEREZ S J M, RAMIREZ-PRADO J S, et al, 2020. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes[J]. Nucleic Acids Res, 48(11): 5953-5966.
KUMAR N, PLATINI T, KULKARNI R V, 2014. Exact distributions for stochastic gene expression models with bursting and feedback[J]. Phys Rev Lett, 113(26): 268105.
KUZNETSOVA K, CHABOT N M, UGOLINI M, et al, 2023. Nanog organizes transcription bodies[J]. Curr Biol, 33(1): 164-173.
LAI W K M, PUGH B F, 2017. Understanding nucleosome dynamics and their links to gene expression and DNA replication[J]. Nat Rev Mol Cell Biol, 18(9): 548-562.
LI G, RUAN X, AUERBACH R K, et al, 2012. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation[J]. Cell, 148(1/2): 84-98.
LIM B, LEVINE M S, 2021. Enhancer-promoter communication: Hubs or loops?[J]. Curr Opin Genet Dev, 67: 5-9.
LIU P J, YUAN Z J, WANG H H, et al, 2016a. Decomposition and tunability of expression noise in the presence of coupled feedbacks[J]. Chaos, 26: 043108.
LIU T, ZHANG J, ZHOU T, 2016b. Effect of interaction between chromatin loops on cell-to-cell variability in gene expression[J]. PLoS Comput Biol, 12(5): e1004917.
LONG H K, PRESCOTT S L, WYSOCKA J, 2016. Ever-changing landscapes: Transcriptional enhancers in development and evolution[J]. Cell, 167(5): 1170-1187.
LUPIÁÑEZ D G, KRAFT K, HEINRICH V, et al, 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions[J]. Cell, 161(5): 1012-1025.
LUPPINO J M, PARK D S, NGUYEN S C, et al, 2020. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes[J]. Nat Genet, 52(8): 840-848.
MARTI-RENOM M A, ALMOUZNI G, BICKMORE W A, et al, 2018. Challenges and guilelines toward 4D nucleome data and model standards[J]. Nat Genet, 50(10): 1352-1358.
MATEO L J, MURPHY S E, HAFNER A, et al, 2019. Visualizing DNA folding and RNA in embryos at single-cell resolution[J]. Nature, 568(7750): 49-54.
MAYRAN A, DROUIN J, 2018. Pioneer transcription factors shape the epigenetic landscape[J]. J Biol Chem, 293(36): 13795-13804.
MICHIELETTO D, ORLANDINI E, MARENDUZZO D, 2016. Polymer model with epigenetic recoloring reveals a pathway for the de novo establishment and 3D organization of chromatin domains[J]. Phys Rev X, 6(4): 041047.
MISTELI T, 2007. Beyond the sequence: Cellular organization of genome function[J]. Cell, 128(4): 787-800.
MISTELI T, 2020. The self-organizing genome: Principles of genome architecture and function[J]. Cell, 183(1): 28-45.
NARENDRA V, ROCHA P P, AN D, et al, 2015. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation[J]. Science, 347(6225): 1017-1021.
NEUERT G, MUNSKY B, TAN R Z, et al, 2013. Systematic identification of signal-activated stochastic gene regulation[J]. Science, 339(6119): 584-587.
OUDELAAR A M, HIGGS D R, 2021. The relationship between genome structure and function[J]. Nat Rev Genet, 22(3): 154-168.
OWEN J A, OSMANOVIĆ D, MIRNY L, 2023. Design principles of 3D epigenetic memory systems[J]. Science, 382(6672): eadg3053.
PECCOUD J, YCART B, 1995. Markovian modeling of gene-product synthesis[J]. Theor Popul Biol, 48(2): 222-234.
PEDRAZA J M, PAULSSON J, 2008. Effects of molecular memory and bursting on fluctuations in gene expression[J]. Science, 319(5861): 339-343.
PEDRAZA J M, van OUDENAARDEN A, 2005. Noise propagation in gene networks[J]. Science, 307(5717): 1965-1969.
POWNALL M E, MIAO L, VEJNAR C E, et al, 2023. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin[J]. Science, 381(6653): 92-100.
RAJ A, PESKIN C S, TRANCHINA D, et al, 2006. Stochastic mRNA synthesis in mammalian cells[J]. PLoS Biol, 4(10): e309.
RAJ A, van OUDENAARDEN A, 2008. Nature, nurture, or chance: Stochastic gene expression and its consequences[J]. Cell, 135(2): 216-226.
RAO S S P, HUNTLEY M H, DURAND N C, et al, 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J]. Cell, 159(7): 1665-1680.
RINGROSE L, HOWARD M, 2017. Dissecting chromatin-mediated gene regulation and epigenetic memory through mathematical modelling[J]. Curr Opin Syst Biol, 3: 7-14.
RINOTT R, JAIMOVICH A, FRIEDMAN N, 2011. Exploring transcription regulation through cell-to-cell variability[J]. Proc Natl Acad Sci, 108(15): 6329-6334.
ROBSON M I, RINGEL A R, MUNDLOS S, 2019. Regulatory landscaping: How enhancer-promoter communication is sculpted in 3D[J]. Mol Cell, 74(6): 1110-1122.
RODRIGUEZ J, LARSON D R, 2020. Transcription in living cells: Molecular mechanisms of bursting[J]. Annu Rev Biochem, 89: 189-212.
RODRIGUEZ J, REN G, DAY C R, et al, 2019. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity[J]. Cell, 176(1/2): 213-226.
ROWLEY M J, CORCES V G, 2018. Organizational principles of 3D genome architecture[J]. Nat Rev Genet, 19(12): 789-800.
SALATHÉ M, KAZANDJIEVA M, LEE J W, et al, 2010. A high-resolution human contact network for infectious disease transmission[J]. Proc Natl Acad Sci, 107(51): 22020-22025.
SANBORN A L, RAO S S P, HUANG S C, et al, 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes[J]. Proc Natl Acad Sci, 112(47): E6456-E6465.
SANCHEZ A, GARCIA H G, JONES D, et al, 2011. Effect of promoter architecture on the cell-to-cell variability in gene expression[J]. PLoS Comput Biol, 7(3): e1001100.
SÁNCHEZ A, KONDEV J, 2008. Transcriptional control of noise in gene expression[J]. Proc Natl Acad Sci, 105(13): 5081-5086.
SHAHREZAEI V, SWAIN P S, 2008. Analytical distributions for stochastic gene expression[J]. Proc Natl Acad Sci, 105(45): 17256-17261.
SHUKRON O, HOLCMAN D, 2017. Transient chromatin properties revealed by polymer models and stochastic simulations constructed from Chromosomal Capture data[J]. PLoS Comput Biol, 13(4): e1005469.
SINGH R, LANCHANTIN J, ROBINS G, et al, 2016. DeepChrome: Deep-learning for predicting gene expression from histone modifications[J]. Bioinformatics, 32(17): i639-i648.
STADHOUDERS R, FILION G J, GRAF T, 2019. Transcription factors and 3D genome conformation in cell-fate decisions[J]. Nature, 569(7756): 345-354.
STAM M, TARK-DAME M, FRANSZ P, 2019. 3D genome organization: A role for phase separation and loop extrusion?[J]. Curr Opin Plant Biol, 48: 36-46.
STASEVICH T J, HAYASHI-TAKANAKA Y, SATO Y, et al, 2014. Regulation of RNA polymerase II activation by histone acetylation in single living cells[J]. Nature, 516(7530): 272-275.
STUMPF P S, SMITH R C G, LENZ M, et al, 2017. Stem cell differentiation as a non-Markov stochastic process[J]. Cell Syst, 5(3): 268-282.
SU J H, ZHENG P, KINROT S S, et al, 2020. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin[J]. Cell, 182(6): 1641-1659.
SUTER D M, MOLINA N, GATFIELD D, et al, 2011. Mammalian genes are transcribed with widely different bursting kinetics[J]. Science, 332(6028): 472-474.
SZABO Q, JOST D, CHANG J M, et al, 2018. TADs are 3D structural units of higher-order chromosome organization in Drosophila[J]. Sci Adv, 4(2): eaar8082.
TAKEI Y, YUN J, ZHENG S, et al, 2021. Integrated spatial genomics reveals global architecture of single nuclei[J]. Nature, 590(7845): 344-350.
TAN L, XING D, CHANG C H, et al, 2018. Three-dimensional genome structures of single diploid human cells[J]. Science, 361(6405): 924-928.
TANTALE K, MUELLER F, KOZULIC-PIRHER A, et al, 2016. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting[J]. Nat Commun, 7: 12248.
VERMUNT M W, ZHANG D, BLOBEL G A, 2019. The interdependence of gene-regulatory elements and the 3D genome[J]. J Cell Biol, 218(1): 12-26.
VOS S M, FARNUNG L, BOEHNING M, et al, 2018a. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6 [J]. Nature, 560(7720): 607-612.
VOS S M, FARNUNG L, URLAUB H, et al, 2018b. Structure of paused transcription complex Pol II-DSIF-NELF[J]. Nature, 560(7720): 601-606.
WANG Z, LUO S, ZHANG Z, et al, 2023. 4D nucleome equation predicts gene expression controlled by long-range enhancer-promoter interaction[J]. PLoS Comput Biol, 19(12): e1011722.
WANG Z, ZHANG Z, LUO S, et al, 2024. Power-law behavior of transcriptional bursting regulated by enhancer-promoter communication[J]. Genome Res, 34(1): 106-118.
WEINERT B T, NARITA T, SATPATHY S, et al, 2018. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome[J]. Cell, 174(1): 231-244.
WU C H, YAMAGUCHI Y, BENJAMIN L R, et al, 2003. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila[J]. Genes Dev, 17(11): 1402-1414.
WU Z, PAN S, CHEN F, et al, 2020. A comprehensive survey on graph neural networks[J]. IEEE Trans Neural Netw Learn Syst, 32(1): 4-24.
YEYATI P L, van HEYNINGEN V, 2008. Incapacitating the evolutionary capacitor: Hsp90 modulation of disease[J]. Curr Opin Genet Dev, 18(3): 264-272.
ZHANG J, YUAN Z, ZHOU T, 2009. Physical limits of feedback noise-suppression in biological networks[J]. Phys Biol, 6(4): 046009.
ZHANG J, ZHOU T, 2014. Promoter-mediated transcriptional dynamics[J]. Biophys J, 106(2): 479-488.
ZHANG J, ZHOU T, 2019. Markovian approaches to modeling intracellular reaction processes with molecular memory[J]. Proc Natl Acad Sci, 116(47): 23542-23550.
ZHANG T, COOPER S, BROCKDORFF N, 2015. The interplay of histone modifications-writers that read[J]. EMBO Rep, 16(11): 1467-1481.
ZHOU J, CUI G, HU S, et al, 2020. Graph neural networks: A review of methods and applications[J]. AI Open, 1: 57-81.
ZHU C, PREISSL S, REN B, 2020. Single-cell multimodal omics: The power of many[J]. Nat Methods, 17(1): 11-14.
ZUIN J, ROTH G, ZHAN Y, et al, 2022. Nonlinear control of transcription through enhancer-promoter interactions[J]. Nature, 604(7906): 571-577.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构