中山大学航空航天学院,广东 深圳 518107
姚清河(1980年生),男;研究方向:计算流体力学、并行算法; E-mail:yaoqhe@mail.sysu.edu.cn
纸质出版日期:2025-01-15,
网络出版日期:2024-07-22,
收稿日期:2024-03-22,
录用日期:2024-05-24
移动端阅览
姚清河,王思淼,杨耿超等.基于康达效应的高速气流推力矢量喷管[J].中山大学学报(自然科学版)(中英文),2025,64(01):265-274.
YAO Qinghe,WANG Simiao,YANG Gengchao,et al.High-speed thrust vector nozzle based on Coandă effect[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(01):265-274.
姚清河,王思淼,杨耿超等.基于康达效应的高速气流推力矢量喷管[J].中山大学学报(自然科学版)(中英文),2025,64(01):265-274. DOI: 10.13471/j.cnki.acta.snus.ZR20240077.
YAO Qinghe,WANG Simiao,YANG Gengchao,et al.High-speed thrust vector nozzle based on Coandă effect[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(01):265-274. DOI: 10.13471/j.cnki.acta.snus.ZR20240077.
基于康达效应设计了一种高速气流推力矢量喷管,利用其对流体的偏转作用实现主流方向控制。喷管由主通道以及外侧八个独立气室和出口处的康达壁面组成,可通过气室外部的开合情况来实现八个偏转方向的控制。本文对所设计的高速气流推力矢量喷管进行了仿真计算,研究了主流速度、气室开合情况及康达壁面曲率三个参数对主流偏转效果的影响。数值模拟结果表明:(1)主流速度在50 ~160 m/s时,不同的开合组合的偏转效果有较为显著的差异。(2)气室打开数量为奇数时,偏转效果优于偶数。只有一个气室开口时,偏转效果最优。(3)计算得到三维喷管最优康达壁面的曲率是55.26。本文设计的高速气流推力矢量喷管能够达到较好的偏转控制效果,最大偏转角度可达到85.91°。
In this paper, a high-speed thrust vector nozzle is designed based on the Conda effect to realize the mainstream direction control by its deflecting effect on the fluid. The nozzle design is composed of the main passage, eight independent gas chambers on the outside and a Coandă wall at the exit. Eight deflection directions can be controlled through the switching condition of the outdoor part of the gas. In this paper, the numerical simulation method is used to simulate the designed high-speed thrust vector nozzle. The influence of the three parameters of the mainstream velocity, the opening and closing of the gas chamber, the change of the curvature of the Coandă wall on the mainstream deflection effect is explored. Numerical simulation results show that: (1)When the mainstream speed is between 50~160 m/s, the deflection effect of different switch combinations is significantly different. (2)When the number of air chamber openings is odd, the deflection effect is better than even. When there is only one air chamber opening, the deflection effect is optimal. (3)The curvature of the optimal Coandă wall of the three-dimensional nozzle is 55.26. The high-speed thrust vector nozzle designed in this paper can achieve better deflection control effect, and the maximum deflection angle can reach 85.91°.
康达效应高速气流推力矢量喷管气流偏转
Coandă effecthigh-speed air flowthrust vector nozzleairflow deflection
陈文通, 2016. 康达气体引射器的设计与性能测试[D]. 大连:大连理工大学.
曹永飞,顾蕴松,程克明,等,2015.基于被动二次流的射流偏转比例控制[J].航空学报,36(3):757-763.
龚东升,顾蕴松,周宇航,等,2020.基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J].航空学报,41(10):101-112.
潘睿丰,2021. 与后体相容的新型气动矢量喷管性能研究[D].南京:南京航空航天大学.
佟川,李昂贤,王启材,等,2021.基于Coandă效应的无源流体推力矢量喷管研究[J].科技资讯,19(9):94-96.
周宇航, 2021. 基于Coanda效应的无源流体推力矢量喷管的三维流动特性研究[D]. 南京:南京航空航天大学.
AHMED R I, DJOJODIHARDJO H, ABU-TALIB A R, et al, 2014. Application of Coandă jet for generating lift of micro air vehicles-preliminary design considerations[J]. Appl Mech Mater, 629: 139-144.
BHARATHWAJ R, GIRIDHARAN P, KARTHICK K, et al, 2016. Computational study of Coanda based fluidic thrust vectoring system for optimising Coanda geometry[J]. Mater Sci Eng, 149(1): 012210.
CÎRCIU I, ROTARU C, 2019. Theoretical and practical aspects of the Coandă effect applied in aeronautics[J]. EDP Sciences J, 290: 06003.
CONSTANTINESCU S G, NICULESCU M L, 2013. Experimental and numerical research of lift force produced by Coandă effect[J]. American Institute of Physics(AIP), 1558(1): 152-155.
DEERE K,2003. Summary of fluidic thrust vectoring research at NASA langley research center[C]//21st AIAA Applied Aerodynamics Conference.
DJOJODIHARDJO H, ABDUL-HAMID M F, JAAFAR A A, et al, 2013. Computational study on the aerodynamic performance of wind turbine airfoil fitted with Coandă jet[J]. J Renew Energy, 2013:839319.
DJOJODIHARDJO H, AHMED R I, 2016. Analytical, computational fluid dynamics and flight dynamics of Coandă MAV[J]. Mater Sci Eng,157(1): 012002.
DJOJODIHARDJO H, AHMED R I, ABU TALIB A R, et al, 2017a. First principle analysis of Coandă micro air vehicle aerodynamic forces for preliminary sizing[J]. Aircr Eng Aerosp Tec, 89(2): 231-245.
DJOJODIHARDJO H, AHMED R I, 2017b. Basic Coandă MAV fluid dynamics and flight mechanics[J]. J Phys:Conf Ser, 822(1): 012051.
DUMITRACHE A, FRUNZULICA F, PREOTU O, 2018. Applications of the Coanda effect in aeronautics[C]// 9th International Conference on Mechanical and Aerospace Engineering(ICMAE). IEEE: 121-125.
FENG Y, SONG Y, CHEN F, 2017. Numerical simulation of circulation control turbine cascade with Coanda jet and counter-flow blowing at high Mach numbers[J]. Aeronaut J, 121(1243): 1239-1260.
FORSTER M, STEIJL R, 2017. Design study of Coanda devices for transonic circulation control[J]. Aeronaut J, 121(1243): 1368-1391.
JEGEDE O, 2016. Dual-axis fluidic thrust vectoring of high-aspect ratio supersonic jets[M]. Oxford Road, Manchester, United Kingdom: The University of Manchester.
KARA E, KURTULUŞ D F, 2023. Determination of optimum parameter space of a fluidic thrust vectoring system based on Coanda effect using gradient-based optimization technique[J]. J Appl Fluid Mech, 16(10): 1974-1988.
WARSOP C, CROWTHER W J, 2018. Fluidic flow control effectors for flight control[J]. AIAA J, 56(10): 3808-3824.
WAITHE K, DEERE K,2003. An experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[C]//21st AIAA Applied Aerodynamics Conference.
0
浏览量
114
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构