中山大学中法核工程与核技术学院,广东 珠海 519082
唐江(2001年生),男;研究方向:反应堆热工水力;E-mail:tangj253@mail2.sysu.edu.cn
姜乃斌(1980年生),男;研究方向:反应堆热工水力;E-mail:jiangnb@mail.sysu.edu.cn
纸质出版日期:2024-09-25,
网络出版日期:2024-07-22,
收稿日期:2024-01-07,
录用日期:2024-01-24
移动端阅览
唐江,许洪瀚,姜乃斌.铅铋合金夹杂颗粒对含缺陷弯管侵蚀的数值模拟[J].中山大学学报(自然科学版)(中英文),2024,63(05):156-166.
TANG Jiang,XU Honghan,JIANG Naibin.Numerical simulation of erosion in defective L-bends caused by particles in lead-bismuth alloy[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):156-166.
唐江,许洪瀚,姜乃斌.铅铋合金夹杂颗粒对含缺陷弯管侵蚀的数值模拟[J].中山大学学报(自然科学版)(中英文),2024,63(05):156-166. DOI: 10.13471/j.cnki.acta.snus.ZR20240013.
TANG Jiang,XU Honghan,JIANG Naibin.Numerical simulation of erosion in defective L-bends caused by particles in lead-bismuth alloy[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(05):156-166. DOI: 10.13471/j.cnki.acta.snus.ZR20240013.
采用计算流体动力学与离散相模型耦合的方法,计算不同工况条件下存在缺陷管道的侵蚀速率。对比不同工况下的侵蚀速率和侵蚀关键区域,揭示了缺陷对侵蚀的影响模式。研究结果表明:(1)随着铅铋共晶流速的增加,含缺陷管道和完整管道的侵蚀区域均显著扩大。含缺陷管道的最大侵蚀速率降低,完整管道的侵蚀速率略有上升。(2)颗粒尺寸的增大会导致含缺陷管道的侵蚀区域从缺陷位置转移至入口直管段;对于完整管道,侵蚀则集中在弯管入口附近,两种管道的侵蚀区域均明显扩大。(3)缺陷的存在增加了凹坑位置的湍流强度,弯管的侵蚀位置集中于凹坑位置,并随着凹坑尺寸的增大,凹坑位置的最大侵蚀速率也显著上升。
The method of coupling computational fluid dynamics and discrete phase model was used to calculate the erosion rate of defective pipes under different working conditions. The erosion rate and erosion key areas under different working conditions are compared, and the influence mode of defects on erosion is revealed.The results show that:(1)With the increase of lead-bismuth eutectic flow velocity, the erosion area of both defective and intact pipelines expands significantly. However, the maximum erosion rate of defective pipes decreased, and the erosion rate of intact pipes increased slightly. (2)The increase in particle size will cause the erosion area of the defective pipe to shift from the defective location to the inlet straight pipe section; for intact pipelines, the erosion is concentrated near the entrance of the elbow, and the erosion area of both pipelines is significantly expanded.(3)The existence of defects increases the turbulence intensity at the pit location, and the erosion position of the elbow is concentrated in the pit position, and the maximum erosion rate of the pit position increases significantly with the increase of the pit size.
铅铋合金颗粒凹坑缺陷离散相模型CFD-DPM模型侵蚀率
lead-bismuth alloyparticlesconcave defectsdiscrete phase modelCFD-DPM modelerosion rate
陈茜, 鲍崇高, 2005. 液/固两相流充蚀磨损机理及材料应用现状[J]. 铸造技术, 26(6):548-550.
杜晓超, 刘帅, 刘鹏, 等, 2021. 基于DPM模型的铅铋合金中颗粒物对管道充蚀的数值模拟研究[J]. 核力工程,42(1):48-53.
李明杨,姜志忠,陈刘利, 等, 2018. T91和316L钢在氧控铅铋中600小时后腐蚀产物分析[J]. 核科学与工程,38(5):784-789.
赵云淦,2023. PbO陶瓷在铅铋合金中充蚀作用的数值模拟及实验研究[J]. 当代化工研究, 10:18-20.
BARBIN N,TERENTIEV D,ALEXEEV S, et al, 2016. Thermodynamic modelling of liquid-vapour equilibrium and thermophysical properties of molten Pb-Bi systems[J]. Phys Chem Liq, 55(1):100-110.
CARLOS A R D, FRANCISCO J D S, VINICIUS F D S, et al, 2015. Vinicius Fagundes dos Santos, numerical investigation of mass loading effects on elbow erosion[J]. Powder Technol, 283: 593-606.
GRANT G, TABAKOFF W, 1975. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. J Aircr,12(5):471-478.
GUAN F, MENG L D, WEI G M, et al, 2014. An experimental study of mechanical behavior of coiled tubing in pipelines[J]. Appl Ocean Res, 44:13-19.
HAIDER A, LEVENSPIEL O, 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles [J]. Powder Technol,58(1):63-70.
LIU Z, LI G, 2023. Numerical simulation of centrifugal pump impeller erosion caused by particles in lead-bismuth alloy[J]. Int J Mod Phys B,37(23):2350225.
OKA Y I, OKAMURA K, YOSHIDA T,et al,2005a. Practical estimation of erosion damage caused by solid particle impact, Part 1: Effects of impact parameters on a predictive equation[J]. Wear ,259:95-101.
OKA Y I, YOSHIDA T, 2005b. Practical estimation of erosion damage caused by solid particle impact, Part 2: Mechanical properties of materials directly associated with erosion damage[J]. Wear ,259:102-109.
PENG W S, CAO X W,2016. Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow[J]. Powder Technol, 294: 266-279.
WANG S, SHI J, HAN X, et al, 2022. Effect of pipe orientation on erosion of π-shaped pipelines[J]. Powder Technol, 408: 117769.
XU L, ZHANG Q, ZHENG J Y, et al,2016.Numerical prediction of erosion in elbow based on CFD-DEM simulation[J]. Powder Technol, 302: 236-246.
ZHANG J, LI N,2003. Parametric study of a corrosion model applied to lead-bismuth flow systems[J]. J Nucl mater, 321(2/3): 184-191.
ZHOU H, ZHANG Y, BAI Y, et al, 2021. Study on reducing elbow erosion with swirling flow[J]. Colloids Surf A Physicochem Eng Aspects, 630:127537.
0
浏览量
36
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构