1.中山大学人工智能学院, 广东 珠海 519082
2.天琴计划”教育部重点实验室/天琴前沿科学中心/国家航天局引力波研究中心, 广东 珠海 519082
3.地理信息工程国家重点实验室,陕西 西安 710054
刘超群(1998年生),女;研究方向:智能感知与信息处理;E-mail:liuchq26@mail2.sysu.edu.cn
谷德峰(1980年生),男;研究方向:GNSS精密定轨与定位、卫星试验评估与应用等;E-mail:gudefeng@mail.sysu.edu.cn
纸质出版日期:2024-03-25,
网络出版日期:2024-01-05,
收稿日期:2023-11-21,
录用日期:2023-12-07
扫 描 看 全 文
刘超群,谷德峰,黄志勇等.利用加速度计数据在轨标定重力卫星质心偏差[J].中山大学学报(自然科学版)(中英文),2024,63(02):123-130.
LIU Chaoqun,GU Defeng,HUANG Zhiyong,et al.Calibrating of the in-orbit center-of-mass offset of gravity satellite by accelerometer data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):123-130.
刘超群,谷德峰,黄志勇等.利用加速度计数据在轨标定重力卫星质心偏差[J].中山大学学报(自然科学版)(中英文),2024,63(02):123-130. DOI: 10.13471/j.cnki.acta.snus.ZR20230018.
LIU Chaoqun,GU Defeng,HUANG Zhiyong,et al.Calibrating of the in-orbit center-of-mass offset of gravity satellite by accelerometer data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):123-130. DOI: 10.13471/j.cnki.acta.snus.ZR20230018.
针对重力卫星质心偏差在轨标定的问题,提出了一种仅使用加速度计数据进行质心在轨标定的方法:以1A级加速度计数据作为输入,采用Butterworth滤波去除数据中的噪声,提取质心标定机动产生的线性加速度和角加速度信号,最后结合最小二乘原理对质心偏差进行标定。利用GRACE-FO C星的加速度计数据对提出的质心标定方法进行验证,估计了C星发射至今的质心偏差。结果显示,三轴的标定精度均优于10 μm,与利用姿态数据计算的质心偏差在三轴方向上的互对比差异(RMS)为[9.6,9.3,7] μm,与喷气推进实验室(JPL)公布结果的RMS为[7.4,3.8]μm。与传统方法不同,由于仅使用了加速度计测量数据,该方法可用于卫星姿态缺失情况下的质心在轨标定。
A method for calibration of the in-orbit center-of-mass offset only on accelerometer data is proposed in order to address the issue of calibration of the in-orbit center-of-mass offset of gravity satellite. With ACC1A data as input, and the Butterworth filter is utilized to remove noise from the data. The linear acceleration and angular acceleration signals caused by the calibration maneuver of center-of-mass are extracted, and finally, the center-of-mass offset is calibrated using the least squares estimation. The method for calibration of the in-orbit center-of-mass proposed in this paper is validated using the accelerometer data from the GRACE-FO C satellite, and the center-of-mass offset since the satellite's launch is estimated. The results show that the calibration accuracy of all three axes is better than 10 μm. The RMS differences in the comparison of the center-of-mass offset results in the three-axis direction, obtained by using the proposed method and by calculating with attitude data, are respectively [9.6,9.3,7] μm, and the RMS of comparison with the center-of-mass offset published by JPL are respectively [7.4,3.8] μm. Different from the traditional method, because only accelerometer data is used, the proposed method can be used for calibration of the in-orbit center-of-mass in the case of data failure of gyroscope and star camera.
GRACE-FO重力卫星加速度计质心标定
GRACE-FOgravity satelliteaccelerometercenter-of-mass calibration
李洪银, 屈少波, 白彦峥,等,2017. 静电悬浮加速度计在轨质心位置的最小二乘估计[J]. 地球物理学报, 60(3): 897-902.
王本利, 廖鹤, 韩毅,2010. 基于MME/EKF算法的卫星质心 在轨标定[J]. 宇航学报, 31(9): 2150-2156.
辛宁, 邱乐德, 张立华,等, 2015. 一种重力测量卫星质心在轨标定改进算法[J]. 航天器工程, 24(4): 44-50.
BUTTERWORTH S, 1930. On the theory of filter amplifiers[J]. Wireless Engineer, 7(6): 536-541.
BEHZADPOUR S, MAYER-GURR T, KRAUSS S, 2021. GRACE follow-on accelerometer data recovery[J]. Journal of Geophysical Research(JGR): Solid Earth, 126(5): e2020JB021297.
CHRISTOPHE B, BOULANGER D, FOULON B, et al, 2015. A new generation of ultra-sensitive electrostatic accelerometers for GRACE follow-on and towards the next generation gravity missions[J]. Acta Astronautica, 117: 1-7.
COSSAVELLA F, HERMAN J, HOFFMANN L, et al, 2022. Attitude control on GRACE follow-on: Experiences from the first years in orbit[M]. Space Operations: Beyond Boundaries to Human Endeavours. Cham: Springer International Publishing: 493-517.
FLURY J, BETTADPUR S, TAPLEY B D, 2008. Precise accelerometry onboard the GRACE gravity field satellite mission[J]. Adv Space Res, 42(8): 1414-1423.
HUANG Z Y, LI S S, CAI L, et al, 2022. Estimation of the center of mass of GRACE-type gravity satellites[J]. Remote Sens, 14(16): 4030.
KORNFELD R P, ARNOLD B W, GROSS M A, et al, 2019. GRACE-FO: The gravity recovery and climate experiment follow-on mission[J]. J Spacecraft Rockets, 56(3): 931-951.
KRASNOV A A, ROZENTSVEIN V G, 2022. Electrostatic accelerometers for space applications: Modern state and prospects of development[J]. Gyroscopy Navig, 13(2): 59-81.
TAPLEY B D, BETTADPUR S, WATKINS M, et al, 2004. The gravity recovery and climate experiment: Mission overview and early results[J]. Geophys Research lett, 31: L09607.
WANG F R, 2000. Grace CG offset determination by magnetic torquers during the in-flight phase[R]. Austin, TX, USA:Center for Space Research,the University of Texas at Austin.
WANG F R, BETTADPUR S, TAPLEY B D, 2002. Precise determination of accelerometer proof mass[J]. Advances in the Astronautical Sciences, 112: 739-752.
WANG F R, 2003. Study on center of mass calibration and K-band ranging system calibration of the GRACE mission[M]. Austin, TX, USA: The University of Texas at Austin.
WANG F R, BETTADPUR S, SAVE H, et al, 2010. Determination of center-of-mass of gravity recovery and climate experiment satellites[J]. J Spacecraft Rockets, 47(2): 371-379.
WEGENER H P, 2022. Analysis of tilt-to-length coupling in the GRACE follow-on laser ranging interferometer[D]. Hannover, Germany:Gottfried Wilhelm Leibniz University.
WEN H Y, KRUIZINGA G, PAIK M, et al, 2019. Gravity recovery and climate experiment follow-on (GRACE-FO) level-1 data product user handbook[R].Pasadena, CA, USA: NASA Jet Propulsion Laboratory,California Institute of Technology.
ZHOU A N, BAI Y Z, CAI L, et al, 2023. An ultra-high sensitivity 70 g-TM electrostatic accelerometer for next generation satellite gravity measurement[J]. Classical Quant Grav, 40(19): 195004.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构