1.中山大学生命科学学院 / 广东省中药上市后质量与药效再评价工程技术研究中心 / 广东省热带亚热带植物资源重点实验室,广东 广州 510275
2.广州白云山星群(药业)股份有限公司,广东 广州 510288
李进良(1996年生),男;研究方向:生物与医药;E-mail:lijliang7@mail2.sysu.edu.cn
王永刚(1974年生),男;研究方向:天然产物的研究与开发;E-mail:wangyg@mail.sysu.edu.cn
孙维广(1974年生),男;研究方向:中药质量控制;E-mail:sunwg@bysxq.com
纸质出版日期:2024-01-25,
网络出版日期:2023-10-23,
收稿日期:2023-07-11,
录用日期:2023-08-07
扫 描 看 全 文
李进良,胡双飞,蒙奋兆等.夏桑菊防治干眼症的网络药理学机制及实验验证[J].中山大学学报(自然科学版)(中英文),2024,63(01):56-65.
LI Jinliang,HU Shuangfei,MENG Fenzhao,et al.Exploring the mechanism and function of Xiasangju in the treatment of xerophthalmia based on network pharmacology and experimental validation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):56-65.
李进良,胡双飞,蒙奋兆等.夏桑菊防治干眼症的网络药理学机制及实验验证[J].中山大学学报(自然科学版)(中英文),2024,63(01):56-65. DOI: 10.13471/j.cnki.acta.snus.2023E038.
LI Jinliang,HU Shuangfei,MENG Fenzhao,et al.Exploring the mechanism and function of Xiasangju in the treatment of xerophthalmia based on network pharmacology and experimental validation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):56-65. DOI: 10.13471/j.cnki.acta.snus.2023E038.
采用网络药理学、分子对接及细胞实验探究了夏桑菊防治干眼症的作用机制。通过超快速高效液相色谱串联三重四极杆飞行时间质谱(UFLC-Triple-TOF-MS/MS)分析夏桑菊的化学成分,借助网络药理学相关数据库与分析平台预测夏桑菊有效成分靶点及检索疾病相关靶点,并利用cytoscape软件及STRING平台构建网络。采用DAVID数据库进行GO和KEGG通路富集分析,将关键靶点前4位与其对应活性成分进行分子对接。体外构建干眼症高渗模型验证核心靶点。共鉴定出61种化学成分,筛选得到24种有效成分可能与干眼症相关的315个潜在的靶点蛋白具有相互作用;筛选出夏桑菊作用的关键活性成分迷迭香酸、蒙花苷及绿原酸等和关键靶点为
TNF-α、Caspase1、IL-6
以及
IL-1β
;富集结果表明,夏桑菊治疗干眼症靶点主要集中在AGE-RAGE、TNF等多个信号通路。3种有效成分在细胞实验中不仅显著抑制人角膜上皮细胞活性降低,提升高渗下细胞的移行能力,而且有效抑制高渗诱导下人角膜上皮细胞中
Caspase1、IL-1β
基因的表达及 TNF-α 蛋白分泌水平。结果表明夏桑菊中的迷迭香酸、蒙花苷及绿原酸3种主要的活性成分,发挥了高渗诱导下对人角膜上皮细胞保护及修复作用,降低了细胞TNF-α蛋白水平
及Caspase1
、
IL-1β
mRNA的相对表达。
The study was to explore the mechanism of action of Xiasangju in the treatment of xerophthalmia by using network pharmacology, molecular docking method and cell experiments. The chemical components of Xiasangju were analyzed by ultra-fast high performance liquid chromatography tandem triple quadrupole time-of-flight mass spectrometry (UFLC-Triple-TOF-MS/MS). Targets of active components were predicted and disease related targets were retrieved with the help of network pharmacologic database and analysis platform. The network was built using cytoscape software and STRING platform. GO and KEGG pathway enrichment analysis was performed using the DAVID database, and the top 4 key targets were matched with their corresponding active component molecules. A hypertonic model of dry eye was constructed in vitro to verify the core target. A total of 61 chemical components were identified, and 24 effective components potentially related to xerophthalmia were selected for further screening. These 24 components were found to interact with 315 potential target proteins. Among them, the key active components of Xiasangju were identified as rosmarinic acid, linarin and chlorogenic acid, which targeted
TNF-α
,
Caspase1
,
IL-6
, and
IL-1β
. Enrichment analysis revealed that the therapeutic targets of Xiasangju for xerophthalmia were concentrated in multiple biological processes, including the AGE-RAGE signaling pathway, TNF signaling pathway, and others. In cell experiments, these three active components not only significantly inhibited cell viability reduction but also enhanced the migration ability of high osmolarity-induced corneal epithelial cells. They effectively suppressed the expression of
Caspase1
and
IL-1β
genes, as well as the secretion level of TNF-α protein in high osmolarity-induced human corneal epithelial cells. The main active components, rosmarinic acid, linarin and chlorogenic acid, in Xiasangju exerted protective and reparative effects on human corneal epithelial cells under high osmolarity conditions. They reduced the protein level of TNF-α and the relative expression of
Caspase1
and
IL-1β
mRNA.
夏桑菊干眼症网络药理学分子对接实验验证
Xiasangjuxerophthalmianetwork pharmacologymolecular dockingexperimental validation
高蒲星, 付乾芳, 刘宇, 等, 2023.基于GEO芯片及网络药理学探讨夏桑菊颗粒治疗高血压病的机制研究[J].天津中医药, 40(3):380-388.
国家药典委员会,2020. 中华人民共和国药典一部: 2020年版[M]. 北京:中国医药科技出版社:1450-1451.
胡盼盼, 2021. 基于网络药理学和分子对接研究绿原酸抗PRRSV的作用机制[J]. 黑龙江畜牧兽医, (19): 79-83+151+152.
李亚梅, 邹昊宇, 胡鸿运, 等, 2020. 夏枯草水提物对过敏性结膜炎大鼠NLRP3/Caspase1/IL-1β通路的影响[J].中国新药杂志, 29(8): 928-933.
罗飞, 张明辉, 陈立珂, 等, 2021. 迷迭香酸抑制NLRP3炎性小体的活化对创伤性颅脑损伤大鼠脑组织损伤和海马区神经元凋亡的影响[J]. 免疫学杂志, 37(7): 568-574.
石守礼, 1978.红眼1号眼药水治疗急性结膜炎[J].赤脚医生杂志, (6):11.
孙鹏, 李贵节, 朱凯, 等, 2016. 夏桑菊凉茶中多成分含量测定方法的研究[J].食品工业, 37(4):278-281.
吴改萍, 2022. 逍生散治疗肝郁阴虚型干眼的临床疗效评价及泪液蛋白质组学研究[D].北京:中国中医科学院.
姚向超, 王延东, 黄楚龙, 2015. 野菊花滴眼液治疗兔蒸发过强型干眼的疗效评价[J]. 中国药师, 18(3): 404-406.
鱼俊杰, 贺振圻, 王钰, 等, 1992 .清明眼药水治疗电光性眼炎310例[J].陕西中医, (5):206.
张明发, 沈雅琴, 2018. 熊果酸的药动学研究进展[J].药物评价研究, 41(1):169-173.
郑苏楠, 彭维, 苏薇薇, 等, 2022. 基于网络药理学与分子对接技术探讨健骨注射液治疗骨质增生及类风湿性关节炎的作用机制[J]. 药学研究, 41(10):631-638+ 649.
周洋, 陈婷妍, 美丽巴努·玉素甫, 2020. 金雀异黄素通过ROS-NLRP3-IL-1β途径保护角膜上皮细胞免受高渗刺激诱导的损伤[J]. 医学研究杂志, 49(4): 80-86.
CHEN M, LI J, PENG Jet al. 2021. Linarin ameliorates innate inflammatory response in an experimental dry eye model via modulation of the NLRP3 inflammasome[J]. Digit Chin Med, (1): 42-53.
DEMOLIN L, ES-SAFI M, SOYFOO M S, et al, 2023. Intense pulsed light therapy in the treatment of dry eye diseases: A systematic review and meta-analysis[J]. J Clin Med, 12(8): 3039.
DAI Y,ZHANG J,XIANG J, et al, 2019. Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells[J]. Redox Biol, 21: 101093.
KAJI Y, USUI T, ISHIDA S, et al, 2006. Advanced glycation end products in human cornea, sclera, and lens[J]. Exp Eye Res, 82(2):289-293.
LIANG Q, ZHANG M, ZHENG T, et al, 2020. Regulation of dry eye disease by regulatory T cells: A review[J]. Ocul Immunol Inflamm, 28(3):369-376.
LIU Q, LUO X, WANG J, et al,2020. The role of cytokines in the pathogenesis of dry eye disease[J]. Ocul Immunol Inflamm, 28(3):491-497.
WANG Y, CHEN Y, LIU Y, et al, 2011. RAGE/NF-κB pathway mediates high glucose-induced secretion of MCP-1 in rat retinal pigment epithelial cells[J] . Graefes Arch Clin Exp Ophthalmol, 249(5):675-682.
WEI Y, ASBELL P A, 2014. The core mechanism of dry eye disease is inflammation[J]. Eye Contact Lens Sci Clin Pract, 40(4): 248-256.
WU S, LUO H, ZHONG Z, et al, 2022. Phytochemistry, pharmacology and quality control of xiasangju: A traditional Chinese medicine formula[J]. Front Pharmacol, 13: 930813.
ZHAO D, ZHAO H, HE Y, et al, 2023. BMSC reduces ROS and inflammation levels by inhibiting TLR4/MYD88/NF-κB signaling axis to alleviate dry eye[J/OL]. Research Square. https://doi.org/10.21203/rs.3.rs-2739871/v1https://doi.org/10.21203/rs.3.rs-2739871/v1.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构