1.广东省体育科学研究所 / 国家体育总局体能与训练适应控制系统重点实验室,广东 广州 510663
2.暨南大学基础医学与公共卫生学院,广东 广州 510632
张援(1967年生),女;研究方向:运动营养、训练监控、运动健康管理;E-mail:sallyzhy@126.com
纸质出版日期:2024-01-25,
网络出版日期:2023-10-11,
收稿日期:2023-07-10,
录用日期:2023-08-07
扫 描 看 全 文
张援,郜艳晖,宋爱晶等.广东省优秀运动员免疫球蛋白指标分布特征及其影响因素[J].中山大学学报(自然科学版)(中英文),2024,63(01):78-85.
ZHANG Yuan,GAO Yanhui,SONG Aijing,et al.The distribution characteristics and influencing factors of immunoglobulin levels for elite athletes in Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):78-85.
张援,郜艳晖,宋爱晶等.广东省优秀运动员免疫球蛋白指标分布特征及其影响因素[J].中山大学学报(自然科学版)(中英文),2024,63(01):78-85. DOI: 10.13471/j.cnki.acta.snus.2023E037.
ZHANG Yuan,GAO Yanhui,SONG Aijing,et al.The distribution characteristics and influencing factors of immunoglobulin levels for elite athletes in Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):78-85. DOI: 10.13471/j.cnki.acta.snus.2023E037.
基于大样本探讨广东省优秀在训运动员长期大强度训练期间免疫球蛋白(Ig)水平(IgG、IgA、IgM)的分布特征及影响因素,并建立相应的百分位数参考值和范围。选取2012—2019年广东省35个运动项目的优秀运动员共2 274名作为研究对象。采用单样本
t
检验比较运动员与普通健康人群Ig水平,两独立样本
t
检验比较不同性别和运动类型的Ig水平,以及单因素方差分析比较不同运动项群、季节和全运备战年份的Ig水平。应用广义估计方程分析Ig水平的影响因素。采用偏度系数-中位数-变异系数方法制定Ig水平的百分位数参考值和参考值范围。结果显示,运动员IgG(
P
<
0.01)、 IgA(
P
<
0.001)、 IgM(
P
<
0.001)水平分别为(11.50±2.20)、(1.92±0.66)和(1.30±0.58) g/L,均显著低于普通健康人群;男性运动员的IgG、IgM水平均显著低于女性(
P
<
0.001);体能主导类运动员的IgG水平显著低于技能主导类运动员(
P
<
0.01);不同运动项群运动员的IgG(
P
<
0.001)、IgM水平(
P
<
0.01)分别有统计学差异;不同季节运动员的IgG水平具有统计学差异(
P<
0.05)。结果还显示,性别(
P
<
0.001)、运动项群(
P
<
0.05)和季节(
P
<
0.01)是影响运动员IgG水平的关键因素;性别(
P
<
0.001)和运动项群(
P
<
0.01)是影响运动员IgM水平的关键因素。此外,运动员IgG、IgA、IgM水平95%参考值范围分别为7.34~16.56、0.82~3.47和0.46~2.91 g/L,其中男性分别为7.34~15.71、0.88~3.47和0.46~2.27 g/L;女性分别为7.96~16.56、0.82~3.36、0.63~2.91 g/L。本研究结果提示:在对运动员开展免疫机能状态监控时需关注性别、运动项目、不同季节气候条件和温度对运动员免疫力的影响。本研究构建的运动员IgG、IgA、IgM指标百分位数参考值和参考值范围,能更精准评估运动员的身体免疫机能状态,为运动员的训练监控、免疫系统评估和营养调控提供科学依据。
Utilizing a large sample, this study aimed to explore the distribution characteristics and influencing factors of immunoglobulin (Ig) IgG, IgA and IgM during long-term high-intensity training for elite athletes in Guangdong Province, and to establish the corresponding percentile reference values and ranges. A total of 2 274 elite athletes from 35 sports events were recruited from 2012 to 2019. The
t
-test of one sample was utilized to compare Ig levels between athletes and the general healthy population, while the
t
-test of two independent samples compared Ig levels across different gender and types of sports. Additionally, one-way ANOVA was used to compare Ig levels across different sports event-groups, seasons, and preparation years for National Games. The generalized estimating equation was applied to analyze the factors affecting athletes' Ig levels. The skewness-median-coefficient of variation method established the percentile reference values and ranges for Ig levels. The results indicated that the levels of IgG (
P
<
0.01), IgA (
P
<
0.001), and IgM (
P
<
0.001) in athletes were (11.50±2.20), (1.92±0.66), and (1.30±0.58) g/L respectively, significantly lower than those in the general healthy population. The levels of IgG and IgM in male athletes were significantly lower than those in females (
P
<
0.001). Athletes dominant in physical sports exhibited significantly lower IgG levels compared to those dominant in skill-based sports (
P
<
0.01). Distinct variances were observed in IgG (
P
<
0.001) and IgM (
P
<
0.01) levels among different sports event-groups, and in IgG levels across various seasons (
P
<
0.05). The results also indicated that gender (
P
<
0.001), sports event-groups (
P
<
0.05), and seasons (
P
<
0.01) were key factors influencing IgG levels, with both gender (
P
<
0.001) and sports event-groups being key influencing factors of IgM levels. Furthermore, the 95% reference range for athletes' IgG, IgA, and IgM were 7.34-16.56, 0.82-3.47, and 0.46-2.91 g/L respectively; for males, they were 7.34-15.71, 0.88-3.47, and 0.46-2.27 g/L, and for females, 7.96-16.56, 0.82-3.36, and 0.63-2.91 g/L. The research suggests that more attention should be paid to the individual evaluations of different gender and sports events, and the impacts of climatic conditions and temperature when monitoring of immune function status of athletes. The percentile reference values and ranges of IgG, IgA, and IgM levels obtained in this study can be accounted in accurately assessing the immune function status of athletes, providing scientific evidence for monitoring training, evaluating the immune system, and regulating nutrition in athletes.
免疫球蛋白(Ig)运动员训练监控参考值影响因素
immunoglobulin (Ig)athletetraining monitoringreference valuesinfluencing factors
班永宏, 徐光, 李晔, 2015. 江苏地区健康人群中3种免疫球蛋白的参考值调查[J]. 检验医学与临床, 12(1): 45-47.
冯连世, 2003. 优秀运动员身体机能评定方法[M]. 北京: 人民体育出版社.
江梅, 2013. LMS法: 一种适用建立肺功能全年龄段正常参考值曲线方法[J]. 中国卫生统计, 30(5): 766-768.
姜志勇, 刘云锋, 关启鸿, 等, 2009. 广州地区1~8岁健康儿童免疫球蛋白免疫比浊法检测以及参考范围的建立[J]. 热带医学杂志, 9(11): 1259-1261.
李梦, 张林, 2014. 皮艇运动员冬训期间血清免疫球蛋白与补体C3、C4特征研究[J]. 体育科研, 35(4): 62-66+77.
孙太华, 2012. 山西省优秀运动员长周期训练中部分血液生化指标的监控[J]. 南京体育学院学报(自然科学版), 11(3): 36-39.
孙逊, 2022. 医学免疫[M]. 9版. 北京: 高等教育出版社.
谭琼, 2013. 山西省优秀柔道运动员日常训练中免疫球蛋白IgA、IgG、IgM的监测与分析[D]. 太原: 太原理工大学.
田麦久, 麻雪田, 黄新河, 等, 1990. 项群训练理论及其应用[J]. 体育科学, 10(6): 29-35+94.
张楠, 2016. LMS方法在《国家学生体质健康标准》制订中的探究[D]. 北京: 北京体育大学.
赵宏婷, 彭质斌, 杨孝坤, 等, 2021. 新型冠状病毒感染者特异性抗体动态变化特征研究进展[J]. 中华流行病学杂志, 42(1): 39-43.
BAYRAM R O, ÖZDEMIR H, EMSEN A, et al, 2019. Reference ranges for serum immunoglobulin (IgG, IgA, and IgM) and IgG subclass levels in healthy children[J]. Turk J Med Sci, 49(2): 497-505.
BEERY T A, 2003. Sex differences in infection and sepsis[J]. Crit Care Nurs Clin N Am, 15(1): 55-62.
CHINEN J, NOTARANGELO L D, SHEARER W T, 2016. Advances in clinical immunology in 2015[J]. J Allergy Clin Immunol, 138(6): 1531-1540.
COLE T J, 1990. The LMS method for constructing normalized growth standards[J]. Eur J Clin Nutr, 44(1): 45-60.
COLE T J, GREEN P J, 1992. Smoothing reference centile curves: The lms method and penalized likelihood[J]. Statist Med, 11(10): 1305-1319.
CÓRDOVA A, SUREDA A, TUR J A, et al, 2010. Immune response to exercise in elite sportsmen during the competitive season[J]. J Physiol Biochem, 66(1): 1-6.
GLEESON M,2006. Immune system adaptation in elite athletes[J]. Curr Opin Clin Nutr Metab Care, 9(6): 659-665.
LAVOY E C P, MCFARLIN B K, SIMPSON R J, 2011. Immune responses to exercising in a cold environment[J]. Wilderness Environ Med, 22(4): 343-351.
MACKINNON L T, 1997. Immunity in athletes[J]. Int J Sports Med, 18(Suppl 1): S62-S68.
RAMÍREZ-VÉLEZ R, CORREA-BAUTISTA J E, GARCÍA-HERMOSO A, et al, 2019. Reference values for handgrip strength and their association with intrinsic capacity domains among older adults[J]. J Cachexia Sarcopenia Muscle, 10(2): 278-286.
SIMPSON R J, CAMPBELL J P, GLEESON M, et al, 2020. Can exercise affect immune function to increase susceptibility to infection?[J]. Exerc Immunol Rev, 26: 8-22.
WALSH N P, 2018. Recommendations to maintain immune health in athletes[J]. Eur J Sport Sci, 18(6): 820-831.
ZENG F, DAI C, CAI P, et al, 2020. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex[J]. J Med Virol, 92(10): 2050-2054.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构