1.广东海洋大学电子与信息工程学院,广东 湛江 524088
2.中山大学海洋科学学院,广东 珠海 519082
3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
4.广东省海洋遥感与信息技术工程技术中心,广东 湛江 524088
许源兴(1997年生),男;研究方向:赤潮的遥感识别及机理;E-mail:xuyuanxing@gdhqx.com
刘大召(1972年生),男;研究方向:海洋遥感及应用;E-mail:liudz@gdou.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-10-23,
收稿日期:2023-02-24,
录用日期:2023-05-18
扫 描 看 全 文
许源兴,孙琰,肖鹤等.基于色相角算法的珠江口赤潮遥感识别[J].中山大学学报(自然科学版)(中英文),2024,63(01):96-104.
XU Yuanxing,SUN Yan,XIAO He,et al.Remote sensing identification of red tide in Pearl River Estuary based on hue angle algorithm[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):96-104.
许源兴,孙琰,肖鹤等.基于色相角算法的珠江口赤潮遥感识别[J].中山大学学报(自然科学版)(中英文),2024,63(01):96-104. DOI: 10.13471/j.cnki.acta.snus.2023E019.
XU Yuanxing,SUN Yan,XIAO He,et al.Remote sensing identification of red tide in Pearl River Estuary based on hue angle algorithm[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):96-104. DOI: 10.13471/j.cnki.acta.snus.2023E019.
为实现珠江口高分辨率赤潮遥感识别,科学支撑赤潮灾害防灾减灾工作,利用海洋一号C/D卫星搭载的海岸带成像仪高空间分辨率数据,在分析珠江口近岸浑浊水体、干净水体和赤潮水体遥感影像光谱特征基础上,通过计算水体色相角并结合目视解译识别珠江口赤潮。利用该方法成功识别2020年10月26日—11月6日在珠江口海域发生的双胞旋沟藻赤潮。利用色相角能够很好地识别出珠江口海域的赤潮;赤潮水体的色相角在58°~61°变化;该方法对形成初期的小范围赤潮、低密度赤潮和条带状赤潮具有很好的识别效果。
To realize the red tide identification of Pearl River Estuary with high resolution remote sensing, and to scientifically support red tide disaster prevention and mitigation work. This paper used the high spatial resolution data of the coastal zone imager carried by Haiyang-1C/D satellite, together with the analysis of the spectral characteristics of remote sensing images of turbid water, clean water and red tide in the Pearl River Estuary, to identify red tide by calculating the water hue angle and combining with visual interpretation. This method was used to successfully identify the
Cochlodinium geminatum
red tide in the Pearl River Estuary from October 26 to November 6, 2020. The hue angle can be used to identify the red tide in the Pearl River Estuary. The hue angle of red tide water varies from 58° to 61°, which has a good identification effect on small area red tide during their initiation, low density red tide and red tide in strip distributed areas.
珠江口赤潮HY-1C/D色相角
Pearl River Estuaryred tideHY-1C/Dhue angle
程玉, 张圣佳, 李金宇, 等, 2021. 基于GOCI的渤海海域赤潮信息遥感监测与分析[J]. 山东科技大学学报(自然科学版), 40(4): 11-20.
李光毅, 刘保清, 邱勇, 等, 2022. 链状裸甲藻赤潮消亡过程及其与休眠包囊关系的初步研究[J]. 海洋学报, 44(8): 123-132.
李敬虎, 邢前国, 郑向阳, 等, 2022. 基于深度学习的无人机影像夜光藻赤潮提取方法[J]. 计算机应用, 42(9): 2969-2974.
李仁虎, 2020. 浙江海域赤潮时空分布特征与赤潮监测研究[D]. 上海: 上海海洋大学.
李阳东, 李仁虎, 常亮, 2020. 基于GOCI数据的浙江沿海赤潮监测[J]. 生态环境学报, 29(8): 1617-1624.
刘建强, 曾韬, 梁超, 等, 2020. 海洋一号C卫星在自然灾害监测中的应用[J].卫星应用, 6: 26-34.
刘锦超, 刘建强, 丁静, 等, 2022. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 44(5): 1-11.
吕颂辉, 岑竞仪, 王建艳, 等, 2019. 我国近海米氏凯伦藻(Karenia mikimotoi)藻华发生概况、危害及其生态学机制[J]. 海洋与湖沼, 50(3): 487-494.
庞勇, 聂瑞, 吕颂辉, 2015. 珠江口双胞旋沟藻Cochlodinium geminatum赤潮生消过程的环境特征初步分析[J].生态环境学报, 24(2): 286-293.
沈亚峰, 刘建强, 丁静, 等, 2020. 海洋一号C星光学载荷对海面溢油的识别能力分析[J]. 遥感学报, 24(8): 933-944.
宋德彬, 2019. 基于多源数据的黄渤海藻类灾害时空分布及对策研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所).
吴霓, 江涛, 江天久, 等, 2013. 珠江口海域双胞旋沟藻赤潮对卤虫幼体、鱼苗和虾苗的急性毒性[J]. 水产学报, 37(9): 1328-1333.
张涛, 苏奋振, 杨晓梅, 等, 2009. MODIS遥感数据提取赤潮信息方法与应用——以珠江口为例[J]. 地球信息科学学报, 11(2): 244-249.
郑龙啸, 吴孟泉, 赵杰, 等, 2022. 南黄海金潮的遥感监测及时空分布特征研究[J]. 海洋学报, 44(5): 12-24.
BLONDEAU-PATISSIER D, GOWER J F R, DEKKER A G, et al, 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans[J]. Prog Oceanogr, 123: 123-144.
CAI L N, ZHOU M R, LIU J Q, et al, 2020. HY-1C observations of the impacts of islands on suspended sediment distribution in Zhoushan coastal waters, China[J]. Remote Sens, 12(11): 1766.
CHEN Q, HUANG M T, TANG X D, 2020. Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: A six-year (2013-2018) observation[J]. Sci Total Environ, 745: 135392.
CHEN X Y, ZHANG J, TONG C, et al, 2019. Retrieval algorithm of chlorophyll-a concentration in turbid waters from satellite HY-1C coastal zone imager data[J]. J Coast Res, 90(S1): 146-155.
GUAN W B, BAO M, LOU X L, et al, 2022. Monitoring, modeling and projection of harmful algal blooms in China[J]. Harmful Algae, 111: 102164.
HUANG S Y, LIU J Q, CAI L N, et al, 2020. Satellites HY-1C and landsat 8 combined to observe the influence of bridge on sea surface temperature and suspended sediment concentration in Hangzhou Bay, China[J]. Water, 12(9): 2595.
LIU L S, ZHOU J, ZHENG B H, et al, 2013. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China[J]. Mar Pollut Bull, 72(1): 213-221.
LIU R J, XIAO Y F, MA Y, 2022. Red tide detection based on high spatial resolution broad band optical satellite data[J]. ISPRS J Photogramm Remote Sens, 184: 131-147.
LUO X L, HU C M, 2014. Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI[J]. Remote Sens Environ, 140: 562-572.
TAO B Y, MAO Z H, LEI H, et al, 2015. A novel method for discriminating Prorocentrum donghaiense from diatom blooms in the East China Sea using MODIS measurements[J]. Remote Sens Environ, 158: 267-280.
van der WOERD H, WERNAND M, 2018. Hue-angle product for low to medium spatial resolution optical satellite sensors[J]. Remote Sens, 10(2): 180.
WANG G L, ZHANG B, LI J S, et al, 2011. Study on monitoring of red tide by multi-spectral remote sensing based on HJ-CCD and MODIS[J]. Procedia Environ Sci, 11: 1561-1565.
WANG S L, LI J S, SHEN Q, et al, 2015. MODIS-based radiometric color extraction and classification of inland water with the forel-ule scale: A case study of Lake Taihu[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 8(2): 907-918.
WANG S L, LI J S, ZHANG B, et al, 2018. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sens Environ, 217: 444-460.
WOERD H J, WERNAND M R, 2015. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI[J]. Sensors, 15(10): 25663-25680.
XU X H, PAN D L, MAO Z H, et al, 2014. A new algorithm based on the background field for red tide monitoring in the East China Sea[J]. Acta Oceanol Sin, 33(5): 62-71.
ZHAO X, LIU R J, MA Y, et al, 2021. Red tide detection method for HY-1D coastal zone imager based on U-net convolutional neural network[J]. Remote Sens,14(1):88.
ZHAO Y L, SHEN Q, WANG Q, et al, 2020. Recognition of water colour anomaly by using hue angle and sentinel 2 image[J]. Remote Sens, 12(4): 716.
ZOHDI E, ABBASPOUR M, 2019. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction[J]. Int J Environ Sci Technol, 16(3): 1789-1806.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构