1.广东省地质局第七地质大队,广东 惠州 516000
2.中山大学地球科学与工程学院,广东 珠海 519082
3.广东省地质过程与矿产资源探查实验室,广东 珠海 519082
4.南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
甄俊伟(1989年生),男;研究方向:水工环地质;E-mail:370849902@qq.com
章桂芳(1981年生),女;研究方向:遥感地质、地表过程GIS与RS综合分析,第四纪地质与环境等;E-mail:zhgfang@mail.sysu.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-10-30,
收稿日期:2023-25-05,
录用日期:2023-07-29
扫 描 看 全 文
甄俊伟,黄智炜,章桂芳等.基于LiDAR数据的汕尾火山嶂地质灾害风险评价[J].中山大学学报(自然科学版)(中英文),2024,63(01):10-23.
ZHEN Junwei,HUANG Zhiwei,ZHANG Guifang,et al.Geological disaster risk assessment of Huoshanzhang in Shanwei of Guangdong based on LiDAR data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):10-23.
甄俊伟,黄智炜,章桂芳等.基于LiDAR数据的汕尾火山嶂地质灾害风险评价[J].中山大学学报(自然科学版)(中英文),2024,63(01):10-23. DOI: 10.13471/j.cnki.acta.snus.2023D032.
ZHEN Junwei,HUANG Zhiwei,ZHANG Guifang,et al.Geological disaster risk assessment of Huoshanzhang in Shanwei of Guangdong based on LiDAR data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):10-23. DOI: 10.13471/j.cnki.acta.snus.2023D032.
机载激光雷达(LiDAR,light detection and ranging)数据能有效去除植被,获取真实的地表形态,从而为植被覆盖区的地质灾害风险评价提供新的方法和手段。汕尾火山嶂山体陡峻、植被茂密,是滑坡、崩塌和泥石流的易发地,本文首先采用高分辨率LiDAR数据生成高精度DEM数据以及坡度、坡向、曲率、起伏度、粗糙度和山体阴影等地形因子,综合高分一号遥感影像进行滑坡/崩塌解译共获得滑坡/崩塌44处;然后基于变维分形模型确定各解译因子对滑坡/崩塌形成的权重后计算获得每个解译滑坡/崩塌的确认概率,剔除概率较低的滑坡/崩塌3处;最后根据沟谷特征将火山嶂划分为6个子区,基于各个子区的地形特征、滑坡/崩塌密度和体量以及人类活动分布进行地质灾害风险评价。结果表明基于LiDAR数据生成的高精度地形因子可以有效地去除植被影响,是植被覆盖区地质灾害解译的有效手段。
Airborne LiDAR (light detection and ranging) data are effective for geological hazard risk assessment in vegetation-covered areas because vegetation information can be removed and thus provide true surface morphology. Huoshanzhang in Shanwei, Guangdong Province is a steep and densely vegetated area that is prone to landslides, collapses, and mudslides. This study adopted high-resolution LiDAR data to generate high-precision DEM data and extract terrain factors such as slope, aspect, curvature, undulation, roughness, and mountain shadows, combined with remote sensing images of GF-1 satellite, identified a total of 44 landslides/collapses. Among them, three low-probability landslides/collapses were removed based on the variable dimensional and fractal model, the determined weight of each terrain factor, and the confirmed probability of each interpreted landslide/collapse. The area was divided into 6 sub-regions according to the characteristics of the valleys and the geological hazard risk assessment of each sub-region was conducted based on the terrain characteristics, landslide/collapse density and volume, and human activities. The results indicate that high-precision terrain factors generated from LiDAR data of vegetation impacts eliminated are an effective source for geological hazard interpretation in vegetation-covered areas.
地质灾害LiDAR风险评价火山嶂
geological disasterLiDARrisk assessmentHuoshanzhang
白世彪,闾国年,盛业华,等,2005. 基于GIS的长江三峡库区滑坡影响因子分析[J]. 山地学报,23(1): 63-70.
蔡浩杰,韩海辉,张雨莲,等,2022. 基于地形特征融合的卷积神经网络滑坡识别[J]. 地球科学与环境学报,44(3): 568-579.
陈善静,向朝参,康青,等,2020. 基于多源遥感时空谱特征融合的滑坡灾害检测方法[J]. 计算机研究与发展,57(9): 1877-1887.
邓博,张会,柏君,等,2022. 利用机载LiDAR的深圳斜坡类地质灾害危险性评价[J]. 武汉大学学报(信息科学版):1-18.
董秀军,许强,余金星,等,2020. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版),45(3): 432-441.
付昱华,2000. 变换形成的分形与海洋环境数据分析预测[J]. 海洋通报,19(1): 79-88.
郭果,陈筠,李明惠,等,2013. 土质滑坡发育概率与坡度间关系研究[J]. 工程地质学报,21(4): 607-612.
菊春燕,贾永刚,潘玉英,等,2013. 基于分形理论的旅游景区地质灾害危险性评估——以青岛崂山为例[J]. 自然灾害学报,22(6): 85-95.
刘小莎,董秀军,钱济人,等,2021. 高植被山区泥石流物源LiDAR遥感精细识别方法研究[J].武汉大学学报(信息科学版):1-16.
孙涛,徐明宇,董秀军,等,2021. 机载LiDAR技术应用于茂密植被山区地质灾害调查[J]. 测绘通报,(4): 90-97.
王森,许强,罗博宇,等,2017. 基于分形理论的南江县滑坡敏感性分析与易发性评价[J]. 水文地质工程地质,44(3): 119-126.
王治华,1999. 滑坡、泥石流遥感回顾与新技术展望[J]. 国土资源遥感,41(3): 10-15,39.
许强,2020. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报,28(2): 360-374.
许强,郭晨,董秀军,2022. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报,51(10): 2020-2033.
易顺民,蔡善武,1999. 西藏樟木滑坡活动空间分布的分维特征及其地质意义[J]. 山地学报,17(1): 63-66.
尹晨沣,2021. 基于机载LiDAR的滑坡特征提取与分布相关性分析[D].重庆交通大学.
张帅娟,2017. 变化检测和面向对象结合的高分辨率遥感影像滑坡体提取方法研究[D]. 成都: 西南交通大学.
周寅康,张捷,王腊春,等,1995. 分形论与自然灾害研究-地震、洪涝灾害中的分形研究[J]. 自然灾害学报,(4): 9-15.
AYALEW L,YAMAGISHI H,UGAWA N,2004. Landslide susceptibility mapping using GIS-based weighted linear combination,the case in Tsugawa area of Agano River,Niigata Prefecture,Japan[J]. Landslides,1(1): 73-81.
CONOSCENTI C,Di MAGGIO C,ROTIGLIANO E,2008. GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy)[J]. Geomorphology,94(3/4): 325-339.
CORSINI A,BORGATTI L,CERVI F,et al.,2009. Estimating mass-wasting processes in active earth slides–earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR[J]. Nat Hazards Earth Syst Sci,9(2): 433-439.
ERCANOGLU M,GOKCEOGLU C,2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region,Turkey)[J]. Eng Geol,75(3/4): 229-250.
GLENN N F,STREUTKER D R,CHADWICK D J,et al.,2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity[J]. Geomorphology,73(1/2): 131-148.
GORSEVSKI P V, 2021. An evolutionary approach forspatial prediction of landslide susceptibility using LiDAR and symbolic classification with genetic programming[J]. Nat Hazards,108: 2283-2307.
GORSEVSKI P V,2021. An evolutionary approach for spatial prediction of landslide susceptibility using LiDAR and symbolic classification with genetic programming[J]. Nat Hazards,108(2): 2283-2307.
HORN B K P,1981. Hill shading and the reflectance map[J]. Proc IEEE,69(1): 14-47.
LI X,CHENG X,CHEN W,et al.,2015. Identification of forested landslides using LiDar data,object-based image analysis,and machine learning algorithms[J]. Remote Sens,7(8): 9705-9726.
Mandelbrot B,1982. The fractal geometry of nature[M]. San Francisco:Freeman and Company.
MEINHARDT M,FINK M,TÜNSCHEL H,2015. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics[J]. Geomorphology,234: 80-97.
PAWLUSZEK K,2019. Landslide features identification and morphology investigation using high-resolution DEM derivatives[J]. Nat Hazards,96: 311-330.
van den EECKHAUT M,POESEN J,VERSTRAETEN G,et al,2005. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides[J]. Geomorphology,67(3/4): 351-363.
YALCIN A,2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations[J]. CATENA,72(1): 1-12.
0
浏览量
22
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构