中山大学航空航天学院,广东 深圳 518107
廖华松(1999年生),男;研究方向:参数识别;E-mail:liaohs@mail2.sysu.edu.cn
吕中荣(1975年生),男;研究方向:参数识别;E-mail:lvzhr@mail.sysu.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-12-06,
收稿日期:2023-07-26,
录用日期:2023-09-15
扫 描 看 全 文
廖华松,陈海,汪利等.基于响应灵敏度方法的螺栓连接结构参数识别及实验[J].中山大学学报(自然科学版)(中英文),2024,63(01):121-127.
LIAO Huasong,CHEN Hai,WANG Li,et al.Parameter identification and experiment of bolted joint structure based on response sensitivity analysis approach[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):121-127.
廖华松,陈海,汪利等.基于响应灵敏度方法的螺栓连接结构参数识别及实验[J].中山大学学报(自然科学版)(中英文),2024,63(01):121-127. DOI: 10.13471/j.cnki.acta.snus.2023B050.
LIAO Huasong,CHEN Hai,WANG Li,et al.Parameter identification and experiment of bolted joint structure based on response sensitivity analysis approach[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):121-127. DOI: 10.13471/j.cnki.acta.snus.2023B050.
本文提出一种基于响应灵敏度的Bouc-Wen滞回模型辨识方法,从率无关角度揭示了螺栓连接所带来的接触摩擦能量耗散特性。首先,将参数识别问题简化成可以使用梯度算法求解的非线性最小二乘问题,并对Bouc-Wen模型进行了响应灵敏度分析。接着,通过有限元仿真研究螺栓连接结构滞回响应,利用响应灵敏度方法识别了Bouc-Wen模型参数,验证了所提方法的有效性。最后,基于准静态实验研究,开展螺栓连接结构模型修正,并用于预估其他荷载下的滞回曲线。研究表明,Bouc-Wen模型不仅可以避免传统Iwan模型由于离散成Jenkins单元所带来的强非线性、刚性方程等问题,而且能够有效地表征螺栓连接结构滞回响应。
A sensitivity analysis approach is proposed for the identification of bolted joint models using Bouc-Wen model, in order to discover the contact-friction energy dissipation properties from rate- independent aspect. Firstly, the parameter identification problem is simplified into a nonlinear least squares problem which can be solved by gradient algorithm, and the gradient response sensitivity analysis of Bouc-Wen model is carried out. Then, the hysteretic response of bolted structure is studied by finite element simulation. The Bouc-Wen model parameters are identified by response sensitivity method, and the effectiveness of the proposed method is verified. Finally, based on the quasi-static experimental study, the bolt-connected structure model is calibrated and used to predict hysteresis curves under other loads. The results show that the Bouc-Wen model can not only avoid the strong nonlinear and rigid equations caused by the discretization of the traditional Iwan model into Jenkins elements, but also can effectively characterize the hysteretic response of bolted structures.
螺栓连接参数识别灵敏度分析滞回Bouc-Wen模型
bolted jointparameter identificationsensitivity analysishyteresisBouc-Wen model
ABAD J, MEDEL F J, FRANCO J M, 2014. Determination of valanis model parameters in a bolted lap joint: Experimental and numerical analyses of frictional dissipation[J]. Int J Mech Sci, 89: 289-298.
ARGATOV I I, BUTCHER E A, 2011. On the Iwan-models for lap-type bolted joints[J]. Inter J of Non Linear Mech, 46(2): 347-356.
CHANG C M, STRANO S, TERZO M, 2016. Modelling of hysteresis in vibration control systems by means of the Bouc-Wen model[J]. Shock Vib, 2016: 1-14.
GUO K, ZHANG X, LI H, et al, 2008. A new dynamical friction model[J]. Int J Mod Phys B, 22(8): 967-980.
KWOK N M, HA Q P, NGUYEN M T, et al, 2007. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA[J]. ISA Trans, 46(2): 167-179.
LACEYA W, CHEN W, HAO H, 2023. Cyclic friction-slip behaviour of G350-steel bolted connections[J]. J Constr Steel Res, 204: 107870.
LU Z R, WANG L, 2017. An enhanced response sensitivity approach for structural damage identification: Convergence and performance[J]. Int J Numer Meth Engng, 111(13): 1231-1251.
MAYERGOYZ I, 1986. Mathematical models of hysteresis[J]. IEEE Trans Magn, 22(5): 603-608.
PELLECCHIA D, PARADISO M, 2021. A review of the class of Bouc-Wen differential models for simulating mechanical hysteresis phenomena[M]. Mathematical Applications in Continuum and Structural Mechanics.Cham: Springer.
SEGALMAN D J, 2001. An initial overview of Iwan modeling for mechanical joints[R]. Livermore, CA: Sandia National Lab.
SHEN J, ASTANEH-ASL A,1999. Hysteretic behavior of bolted-angle connections[J]. J Constr Steel Res, 51(3): 201-218.
SHETTY D, ALLEN M, 2023. A parametric study of the Bouc-Wen model for bolted joint dynamics[J]. J Vib Acoust, 145(4): 041004.
SUES R H, MAU S T, WEN Y K, 1988. Systems identification of degrading hysteretic restoring forces[J]. J Eng Mech, 114(5): 833-846.
VAIANA N, ROSATI L, 2023. Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses[J]. Mech Syst Signal Process, 182: 109539.
YANG D, WANG L, LU Z R, 2022. Parameters identification of Iwan-Bolted joint models based on enhanced hysteretic force response sensitivity approach[J]. Int J Non Linear Mech, 143: 104022.
YAR M, HAMMOND J K, 1987. Parameter estimation for hysteretic systems[J]. J Sound Vib, 117(1): 161-172.
ZHANG H, FOLIENTE G C, YANG Y, et al, 2002. Parameter identification of inelastic structures under dynamic loads[J]. Earthquake Engng Struct Dyn, 31(5): 1113-1130.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构