中山大学航空航天学院,广东 深圳 518107
冯创新(1998年生),男;研究方向:仿生结构与实验流体力学;E-mail:Fengchx5@mail2.sysu.edu.cn
蒋建平(1979年生),男;研究方向:仿生结构设计与智能控制;E-mail:jiangjp8@mail.sysu.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-09-22,
收稿日期:2023-06-13,
录用日期:2023-07-04
扫 描 看 全 文
冯创新,蒋建平,白宏磊等.仿生鳄鱼游动推进机制动力学分析[J].中山大学学报(自然科学版)(中英文),2024,63(01):113-120.
FENG Chuangxin,JIANG Jianping,BAI Honglei,et al.Dynamical analysis of propulsive mechanism of bionic crocodile swimming in water[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):113-120.
冯创新,蒋建平,白宏磊等.仿生鳄鱼游动推进机制动力学分析[J].中山大学学报(自然科学版)(中英文),2024,63(01):113-120. DOI: 10.13471/j.cnki.acta.snus.2023B041.
FENG Chuangxin,JIANG Jianping,BAI Honglei,et al.Dynamical analysis of propulsive mechanism of bionic crocodile swimming in water[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):113-120. DOI: 10.13471/j.cnki.acta.snus.2023B041.
本文建立了鳄鱼水中摆尾游动的动力学模型,并利用Froude游动效率理论给出了鳄鱼推进效率的计算方法。结果表明:鳄鱼游动过程中,稳态平均游速随摆动频率、幅值和波长的增大逐渐增大。其中,增加摆动频率对提高游速的贡献最大,增加摆动波长的贡献最小;推力功率随着摆动频率、幅值和波长的增大逐渐增加,功率损耗也逐渐增加;当鳄鱼摆动频率为0.7 Hz、摆幅为0.2 m、波长为1.2 m时,游动效率达到最大为64%;游动效率随着
Re
的增大,呈现先增大后减小的趋势,在
Re
为3×10
5
时达最大值;游动效率随着
St
的增大而逐渐趋近于55%的稳定值。研究结果对研制仿鳄鱼机器人具有重要参考价值。
The dynamics model of a swimming crocodile is established based on its kinematic model and Lighthill’s slender-body theory. Furthermore, the propulsion efficiency of a swimming crocodiles is calculated using Froude’s theory. The results show that the cruising velocity of the crocodile increases with the increase of the tail’s swinging frequency, amplitude and wavelength.And,the increase of swinging frequency being the greatest contribution, the increase of swavelength being the least contribution. It is also observed that the thrust power increases gradually with the increase of the tail’s swinging frequency, amplitude and wavelength. When the oscillating frequency is 0.7 Hz, the oscillating amplitude is 0.2 m and the wavelength is 1.2 m, the thrust efficiency is up to 64%. The thrust efficiency increases first and then decreases with the increase of
Re
, and reaches the maximum value when the
Re
is 3×10
5
, gradually approaching the constantvalue of 55% with the increase of
St
. The results provid an valuable reference for the development of a crocodile-like robot.
仿生鳄鱼摆尾推进动力学建模游动效率
bionic crocodilewagging thrustdynamics modelingswimming efficiency
白发刚,薛钢,黄健堃,等,2022.仿生机器鱼水动力学与机构动力学耦合建模研究[J]. 西安交通大学学报,56(9):46-56.
陈宏,2006. 仿生机器鱼巡游和机动的运动机理研究[D].合肥:中国科学技术大学.
崔祚,姜洪州, 刘圣陶,2020.柔性机器鱼的动力学建模及其游动性能分析[J]. 科学技术与工程,20(36):14994-14999.
王田苗,仲启亮,孟刚,等,2010.仿鳄鱼水陆两栖机器人机构优化设计与试验验证[J]. 机械工程学报,46(13):76-82.
王睿,王硕,2016.仿生机器鱼推进效率实验研究进展[J]. 系统科学与数学,36(9):1388-1396.
王安忆,刘贵杰,王新宝,等,2016.身体/尾鳍推进模式仿生机器鱼研究的进展与分析[J]. 机械工程学报,52(17):137-146.
夏丹,陈维山,伍志军,等,2013.鲹科模式机器鱼自主游动的水动力特性研究[J]. 机械工程学报,49(21):54-61.
梁建宏,王田苗,魏洪兴,2002.水下仿生机器鱼的研究进展I―鱼类推进机理[J]. 机器人,24(3):234-238.
游鹏,2022. 仿生鳄鱼水陆两栖机器人的设计及研究[D]. 徐州:中国矿业大学.
ALLEN V, PAXTON H, HUTCHINSON J R, 2009. Variation in center of mass estimates for extant sauropsids and its importance for reconstructing inertial properties of extinct archosaurs[J]. Anat Rec(Hoboken), 292(9): 1442-1461.
CANDELIER F, BOYER F, LEROYER A, 2011. Three-dimensional extension of Lighthill’s large-amplitude elongated-body theory of fish locomotion[J]. J Fluid Mech, 674: 196-226.
CHOPRA M G,1974. Hydromechanics of lunate-tail swimming propulsion[J]. J Fluid Mech, 64(2): 375-392.
JIA X, FRENGER M, CHEN Z, et al, 2015. An alligator inspired modular robot[C]// International Conference on Robotics and Automation (ICRA). IEEE:1949-1954.
LIGHTHILL M J,1960. Note on the swimming of slender fish[J]. J Fluid Mech, 9(2): 305-317.
LIGHTHILL M J,1970. Aquatic animal propulsion of high hydromechanical efficiency[J].J Fluid Mech,44(2):265-301.
LIGHTHILL M J,1971. Large-amplitude elongated-body theory of fish locomotion[J]. Proc R Soc Lond B, 179(1055): 125-138.
LINDSEY C C,1978. 1-form, function, and locomotory habits in Fish[J].Fish Physiology,7:1-100.
MANTER J T,2005. The mechanics of swimming in the alligator[J]. J Exp Zool,83(3):345-358.
SEEBACHER F, ELSWORTH P G, FRANKLIN C E, 2003. Ontogenetic changes of swimming kinematics in a semi-aquatic reptile (crocodylus porosus)[J]. Aust J Zool, 51(1): 15-24.
SALAZAR R, FUENTES V, ABDELKEFI A, 2018. Classification of biological and bioinspired aquatic systems: A review[J]. Ocean Eng, 148: 75-114.
TAYLOR F, DANIEL F,ALEXANDER S,2018. Bio-inspired underwater propulsors[D].https://www.researchgate.net/publication/322818882_Bio-inspired_underwater_propulsorshttps://www.researchgate.net/publication/322818882_Bio-inspired_underwater_propulsors.
TAYLOR G,1952. Analysis of the swimming of long and narrow animals[J]. Proc R Soc Lond A, 214(1117): 158-183.
TAYLOR G,2011. Analysis of the swimming of microscopic organisms[J]. Russ J Nonlinear Dyn,7(2):371-387.
WU T Y,1961. Swimming of a waving plate[J]. J Fluid Mech, 10(3): 321-344.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构