中山大学计算机学院,广东 广州 510006
郎健翔(1999年生),男;研究方向:量子计算;E-mail:langjx3@mail2.sysu.edu.cn
李绿周(1981年生),男;研究方向:量子计算;E-mail:lilvzh@mail.sysu.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-12-18,
收稿日期:2023-09-07,
录用日期:2023-11-02
扫 描 看 全 文
郎健翔,李绿周.求图中点度数的量子算法[J].中山大学学报(自然科学版)(中英文),2024,63(01):1-9.
LANG Jianxiang,LI Lüzhou.Quantum algorithm for finding degrees[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):1-9.
郎健翔,李绿周.求图中点度数的量子算法[J].中山大学学报(自然科学版)(中英文),2024,63(01):1-9. DOI: 10.13471/j.cnki.acta.snus.2023A070.
LANG Jianxiang,LI Lüzhou.Quantum algorithm for finding degrees[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):1-9. DOI: 10.13471/j.cnki.acta.snus.2023A070.
本文探讨了图属性测试问题的量子加速:对于给定的图和整数
<math id="M1"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229717&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229714&type=
1.43933344
2.28600001
,图中是否存在一个度数为
<math id="M2"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229717&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229714&type=
1.43933344
2.28600001
的顶点?该问题的量子复杂度在邻接矩阵oracle模型下被证明为
<math id="M3"><mi mathvariant="normal">𝒪</mi><mfenced separators="|"><mrow><mi>N</mi><mroot><mrow><mi>k</mi></mrow><mrow/></mroot></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229668&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229665&type=
12.95400047
5.41866684
,而其经典复杂度为
<math id="M4"><mi mathvariant="normal">Ω</mi><mfenced separators="|"><mrow><msup><mrow><mi>N</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229674&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229671&type=
8.97466660
3.80999994
,其中
<math id="M5"><mi>N</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229682&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229679&type=
2.28600001
2.28600001
是图中顶点的数量. 为了证明该结果,得出了一个技术性结论,即对于给定的函数
<math id="M6"><mi>g</mi><mtext> </mtext><mo>:</mo><mtext> </mtext><mfenced open="[" close="]" separators="|"><mrow><mi>N</mi></mrow></mfenced><mo>→</mo><mo stretchy="false">{</mo><mn mathvariant="normal">0
1</mn><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229689&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229686&type=
22.18266678
3.30200005
和整数
<math id="M7"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229717&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229714&type=
1.43933344
2.28600001
,存在一个量子算法可以在
<math id="M8"><mi mathvariant="normal">𝒪</mi><mfenced separators="|"><mrow><mroot><mrow><mi>N</mi><mi>k</mi></mrow><mrow/></mroot></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229702&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229699&type=
12.19200039
5.41866684
次查询内判定
<math id="M9"><mfenced open="|" close="|" separators="|"><mrow><mfenced open="{" close="}" separators="|"><mrow><mi>x</mi><mo>:</mo><mi>g</mi><mfenced separators="|"><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><mn mathvariant="normal">1</mn></mrow></mfenced></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229711&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229706&type=
18.88066673
4.57200003
是否等于
<math id="M10"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229717&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229714&type=
1.43933344
2.28600001
.文中的结果基于量子奇异值变换(QSVT)和有误差输入的量子搜索技术.
Quantum speedups for the graph property testing problem is studied: For a given graph and an integer
<math id="M11"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229782&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229779&type=
1.69333339
2.62466669
, does the graph have a vertex of degree
<math id="M12"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229782&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229779&type=
1.69333339
2.62466669
? The quantum complexity of this problem is proven to be
<math id="M13"><mi mathvariant="normal">𝒪</mi><mfenced separators="|"><mrow><mi>N</mi><mroot><mrow><mi>k</mi></mrow><mrow/></mroot></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229737&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229734&type=
15.15533447
6.34999990
under the adjacency matrix oracle model, whereas its classical complexity is
<math id="M14"><mi mathvariant="normal">Ω</mi><mfenced separators="|"><mrow><msup><mrow><mi>N</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229744&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229740&type=
10.41399956
4.31799984
, where
<math id="M15"><mi>N</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229750&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229747&type=
2.62466669
2.62466669
is the number of vertexes in the graph. In order to prove the result, a technical result that there exists a quantum algorithm for deciding whether
<math id="M16"><mfenced open="|" close="|" separators="|"><mrow><mfenced open="{" close="}" separators="|"><mrow><mi>x</mi><mtext> </mtext><mo>:</mo><mtext> </mtext><mi>g</mi><mfenced separators="|"><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><mn mathvariant="normal">1</mn></mrow></mfenced></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229757&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229753&type=
23.53733444
5.33400011
equals
<math id="M17"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229782&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229779&type=
1.69333339
2.62466669
or not in
<math id="M18"><mi mathvariant="normal">𝒪</mi><mfenced separators="|"><mrow><mroot><mrow><mi>N</mi><mi>k</mi></mrow><mrow/></mroot></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229770&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229767&type=
14.22399998
6.34999990
queries, for a given function
<math id="M19"><mi>g</mi><mo>:</mo><mtext> </mtext><mfenced open="[" close="]" separators="|"><mrow><mi>N</mi></mrow></mfenced><mo>→</mo><mo stretchy="false">{</mo><mn mathvariant="normal">0
1</mn><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229777&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229773&type=
25.06133461
3.80999994
and an integer
<math id="M20"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229782&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53229779&type=
1.69333339
2.62466669
is obtained. These results are based on the techniques of quantum singular value transformation(QSVT) and quantum search on bounded-error inputs.
量子奇异值变换量子算法图属性测试
quantum singular value transformationquantum algorithmgraph property testing
AARONSON S, BEN-DAVID S, KOTHARI R, et al, 2021. Degree vs. approximate degree and quantum implications of Huang’s sensitivity theorem[C]//Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 6 C: 1330-1342.
AMBAINIS A, BALODIS K, IRAIDS J, et al, 2020. Quantum lower and upper bounds for 2d-grid and Dyck language[C]//45th International Symposium on Mathematical Foundations of Computer Science, 8.
BALASUBRAMANIAN R, RAMAN V, SRINIVASARAGAVAN G, 1997. Finding scores in tournaments[J]. J Algorithms, 24(2): 380-394.
BERETTA L, NARDINI F M, TRANI R, et al, 2019. An optimal algorithm to find champions of tournament graphs[C]//International Symposium on String Processing and Information Retrieval: 267-273.
BRASSARD G, HOYER P, MOSCA M, et al, 2002. Quantum amplitude amplification and estimation[J]. Contemp Math, 305: 53-74.
BUHRMAN H, CLEVE R, de WOLF R, et al, 1999. Bounds for small-error and zero-error quantum algorithms[C]//Proceedings of the 40th Annual Symposium on Foundations of Computer Science: 358-368.
DEY P, 2017. Query complexity of tournament solutions[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 31(1): 2992-2998.
GILYÉN A, SU Y, LOW G H, et al, 2019. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics[C]//Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing:193-204.
GOLDREICH O, 2017. Introduction to property testing[M]. Cambridge: Cambridge University Press.
GOYAL D, JAYAPAUL V, RAMAN V, 2020. Elusiveness of finding degrees[J]. Discrete Appl Math, 286: 128-139.
GUTIN G, MERTZIOS G B, REIDL F, 2018. Searching for maximum out-degree vertices in tournaments[EB/OL]. arXiv:1801.04702.
HØYER P, MOSCA M, de WOLF R, 2003. Quantum search on bounded-error inputs[M]//Baeten J C M, et al, Eds. Automata, Languages and Programming. Heidelberg: Springer, 291-299.
KULKARNI R, PODDER S, 2015. Quantum query complexity of subgraph isomorphism and homomorphism[EB/OL]. arXiv: 1509.06361.
LOW G H, CHUANG I L, 2017. Hamiltonian simulation by uniform spectral amplification[EB/OL]. arXiv: 1707.05391.
MAGNIEZ F, SANTHA M, SZEGEDY M, 2007. Quantum algorithms for the triangle problem[J]. SIAM J Comput, 37(2): 413-424.
MARTYN J M, ROSSI Z M, TAN A K, et al, 2021. Grand unification of quantum algorithms[J]. PRX Quantum, 2(4): 040203.
MONTANARO A, de WOLF R, 2016. A survey of quantum property testing[J]. Theory Comput, 7: 1-81.
ROSENBERG A L, 1973. On the time required to recognize properties of graphs: A problem[J]. ACM SIGACT News, 5(4): 15-16.
SUN X, YAO A C, ZHANG S, 2004. Graph properties and circular functions: How low can quantum query complexity go?[C]//Proceedings of 19th IEEE Annual Conference on Computational Complexity: 286-293.
YODER T J, LOW G H, CHUANG I L, 2014. Fixed-point quantum search with an optimal number of queries[J]. Phys Rev Lett, 113(21): 210501.
0
浏览量
24
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构