重庆师范大学数学科学学院, 重庆 401331
余君丽(1998年生),女;研究方向:同调代数理论;E-mail:979598210@qq.com
张春霞(1979年生),女;研究方向:同调代数理论;E-mail:cxzhang@cqnu.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-11-16,
收稿日期:2022-03-18,
录用日期:2022-12-16
扫 描 看 全 文
余君丽,张春霞.n,d-(Ext)-phantom 态射与 n,d-环[J].中山大学学报(自然科学版)(中英文),2024,63(01):154-165.
YU Junli,ZHANG Chunxia.On n,d-(Ext)-phantom morphisms and n,d-rings[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):154-165.
余君丽,张春霞.n,d-(Ext)-phantom 态射与 n,d-环[J].中山大学学报(自然科学版)(中英文),2024,63(01):154-165. DOI: 10.13471/j.cnki.acta.snus.2022A030.
YU Junli,ZHANG Chunxia.On n,d-(Ext)-phantom morphisms and n,d-rings[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):154-165. DOI: 10.13471/j.cnki.acta.snus.2022A030.
引入了
<math id="M7"><mfenced separators="|"><mrow><mi>n</mi><mo>
</mo><mi>d</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=
8.55133343
3.89466691
-phantom 态射与
<math id="M8"><mfenced separators="|"><mrow><mi>n</mi><mo>
</mo><mi>d</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=
8.55133343
3.89466691
-
<math id="M9"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226657&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226654&type=
4.23333359
2.28600001
-phantom 态射的概念. 利用它们,给出了
<math id="M10"><mfenced separators="|"><mrow><mi>n</mi><mo>
</mo><mi>d</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=
8.55133343
3.89466691
-环、
<math id="M11"><mi>n</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226673&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226670&type=
1.60866666
2.28600001
-遗传环以及
<math id="M12"><mi>n</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226673&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226670&type=
1.60866666
2.28600001
-正则环的一系列新刻画.
The concepts of
<math id="M13"><mfenced separators="|"><mrow><mi>n</mi><mo>
</mo><mi>d</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=
8.55133343
3.89466691
-phantom and
<math id="M14"><mfenced separators="|"><mrow><mi>n</mi><mo>
</mo><mi>d</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=
8.55133343
3.89466691
-
<math id="M15"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226690&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226687&type=
4.99533367
2.70933342
-phantom morphisms are introduced, and are used to characterize
<math id="M16"><mfenced separators="|"><mrow><mi>n</mi><mo>
</mo><mi>d</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=
8.55133343
3.89466691
-rings,
<math id="M17"><mi>n</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226706&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226703&type=
1.86266661
2.62466669
-hereditary rings and
<math id="M18"><mi>n</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226706&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226703&type=
1.86266661
2.62466669
-regular rings in various ways.
<math id="M19"><mfenced separators="|"><mrow><mi>n</mi><mo></mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=8.551333433.89466691-phantom态射<math id="M20"><mfenced separators="|"><mrow><mi>n</mi><mo></mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=8.551333433.89466691-<math id="M21"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226657&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226654&type=4.233333592.28600001-phantom态射<math id="M22"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226673&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226670&type=1.608666662.28600001-凝聚环<math id="M23"><mfenced separators="|"><mrow><mi>n</mi><mo></mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=8.551333433.89466691-环<math id="M24"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226673&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226670&type=1.608666662.28600001-遗传环
<math id="M25"><mfenced separators="|"><mrow><mi>n</mi><mo></mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=8.551333433.89466691-phantom morphism<math id="M26"><mfenced separators="|"><mrow><mi>n</mi><mo></mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=8.551333433.89466691-<math id="M27"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226690&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226687&type=4.995333672.70933342-phantom morphism<math id="M28"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226706&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226703&type=1.862666612.62466669-coherent ring<math id="M29"><mfenced separators="|"><mrow><mi>n</mi><mo></mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230559&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53230556&type=8.551333433.89466691-ring<math id="M30"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226706&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53226703&type=1.862666612.62466669-hereditary ring
BRAVO D, PÉREZ M A, 2017. Finiteness conditions and cotorsion pairs[J]. J Pure Appl Algebra, 221(6): 1249-1267.
BRAVO D, PARRA C E, 2019. Torsion pairs over <math id="M1306"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-hereditary rings[J]. Commun Algebra, 47(5): 1892-1907.
COSTA D L, 1994. Parameterizing families of non-noetherian rings[J]. Commun Algebra, 22(10): 3997-4011.
CRAWLEY-BOEVEY W, 1994. Locally finitely presented additive categories[J]. Commun Algebra, 22(5): 1641-1674.
CRIVEI S, PREST M, TORRECILLAS B, 2010. Covers in finitely accessible categories[J]. Proc Amer Math Soc, 138(4): 1213-1221.
ENOCHS E E, OYONARTE L, 2002. Covers, envelopes and cotorsion theories[M]. New York: Nova Science Publishers.
ENOCHS E E, JENDA O M G, 2000. Relative homological algebra[M]. Berlin: Walter de Gruyter.
FU X H, GUIL ASENSIO P A, HERZOG I, et al, 2013. Ideal approximation theory[J]. Adv Math, 244: 750-790.
HERZOG I, 2007. The phantom cover of a module[J]. Adv Math, 215(1): 220-249.
HERZOG I, 2008. Contravariant functors on the category of finitely presented modules[J]. Isr J Math, 167(1): 347-410.
LAM T Y, 1999. Lectures on modules and rings[M]. New York: Springer.
LAN K Y, LU B, 2021. On <math id="M1307"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-phantom and <math id="M1308"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-<math id="M1309"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231699&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231698&type=4.233333592.28600001-phantom morphisms[J]. Taiwanese J Math, 25(5): 941-957.
LI W Q, OUYANG B Y, 2014. <math id="M1310"><mfenced separators="|"><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231715&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231714&type=7.281332973.38666677-injective cover, <math id="M1311"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-coherent rings, and <math id="M1312"><mfenced separators="|"><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231715&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231714&type=7.281332973.38666677-rings[J]. Czech Math J, 64(2): 289-304.
MAO L X, DING N Q, 2006. Relative projective modules and relative injective modules[J]. Commun Algebra, 34(7): 2403-2418.
MAO L X, 2013. On covers and envelopes in some functor categories[J]. Commun Algebra, 41(5): 1655-1684.
MAO L X, 2016. Precovers and preenvelopes by phantom and <math id="M1313"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231711&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231710&type=4.233333592.28600001-phantom morphisms[J]. Commun Algebra, 44(4): 1704-1721.
MAO L X, 2018. Higher phantom and <math id="M1314"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231711&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231710&type=4.233333592.28600001-phantom morphisms[J]. J Algebra Appl, 17(1): 1850012.
MAO L X, 2019. Higher phantom morphisms with respect to a subfunctor of <math id="M1315"><mi mathvariant="normal">E</mi><mi mathvariant="normal">x</mi><mi mathvariant="normal">t</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231711&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231710&type=4.233333592.28600001[J]. Algebra Represent Theory, 22(2): 407-424.
PINZON K, 2008. Absolutely pure covers[J]. Commun Algebra, 36(6): 2186-2194.
STENSTRÖM B, 1970. Coherent rings and FP-injective modules[J]. J London Math Soc, (2): 323-329.
ZHOU D X, 2004. On <math id="M1316"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-coherent rings and <math id="M1317"><mfenced separators="|"><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></mfenced></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231715&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231714&type=7.281332973.38666677-rings[J]. Commun Algebra, 32(6): 2425-2441.
ZHU Z M, 2011. On <math id="M1318"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-coherent rings, <math id="M1319"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-hereditary rings and <math id="M1320"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-regular rings[J]. Bull Iran Math Soc, 37(4): 251-267.
ZHU Z M, 2018. Some results on <math id="M1321"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-coherent rings, <math id="M1322"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-hereditary rings and <math id="M1323"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231727&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53231726&type=1.608666662.28600001-regular rings[J]. Bol Soc Mat Mex, 24(1): 81-94.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构