纸质出版日期:2012,
网络出版日期:2012-3-25
扫 描 看 全 文
引用本文
阅读全文PDF
在Dirichlet边界条件下研究一类具有非线性扩散的捕食-食饵模型正解的存在性。首先利用极大值原理及上下解方法给出正解的先验估计。其次考察相关特征值问题,给出无界的分歧曲线,并以食饵生长率为分歧参数,证明了中性曲线附近存在发自半平凡解的局部分歧正解。最后将局部分歧延拓为整体分歧,从而得到正解存在的充分条件。
A nonlinear diffusive predator-prey model is studied under Dirichlet boundary conditions. Some a priori estimates are firstly derived. Then by investigating the corresponding eigenvalue problem and taking the growth rate of prey as a parameter, local bifurcation positive solutions emanating from the semitrivial solutions are obtained. Finally, by use of global bifurcation theory, two sufficient conditions for the existence of positive solutions are established.
993
浏览量
528
下载量
0
CSCD
相关文章
相关作者
相关机构