1.延安大学化学与化工学院,陕西 延安 716000
2.延安大学延安医学院,陕西 延安 716000
3.新正检验检测有限公司,新疆 乌鲁木齐 830000
SUN Lingbo(lingbosun@yau.edu.cn)
网络出版日期:2025-01,
收稿日期:2024-12-08,
录用日期:2025-01-06
移动端阅览
张越诚, 马静, 孙凌波, 等. 基于双发射碳量子点的比率型荧光探针在Mn2+传感与细胞成像中的应用[J/OL]. 中山大学学报(自然科学版)(中英文), 2025,1-14.
ZHANG YUECHENG, MA JING, SUN LINGBO, et al. A dual-emission carbon dots-based ratiometric sensor for detection and cellular imaging of Mn2+ ions. [J/OL]. Acta scientiarum naturalium universitatis sunyatseni, 2025, 1-14.
张越诚, 马静, 孙凌波, 等. 基于双发射碳量子点的比率型荧光探针在Mn2+传感与细胞成像中的应用[J/OL]. 中山大学学报(自然科学版)(中英文), 2025,1-14. DOI: 10.13471/j.cnki.acta.snus.ZR20240347.
ZHANG YUECHENG, MA JING, SUN LINGBO, et al. A dual-emission carbon dots-based ratiometric sensor for detection and cellular imaging of Mn2+ ions. [J/OL]. Acta scientiarum naturalium universitatis sunyatseni, 2025, 1-14. DOI: 10.13471/j.cnki.acta.snus.ZR20240347.
Mn作为一种人体必需的微量元素,在众多生命过程中都发挥着重要作用。近期研究发现,Mn
2+
可独立激活cGAS-STING通路,显著提高免疫治疗效果。但由于Mn
2+
特异性分子探针的缺失,导致Mn
2+
介导cGAS-STING通路免疫调控分子机制的相关研究严重滞后。因此,急需构建活细胞内Mn
2+
的检测与成像方法。本文使用天冬氨酸与对苯二胺为原材料,通过一步水热法合成了具有双发射特性的碳量子点。当Mn
2+
加入碳量子点溶液时,碳量子点在350 nm处的荧光发射峰显著增强,而其在610 nm处的发射强度基本保持不变。因此,使用350、610 nm处的信号值分别作为响应信号与参比信号,便可构建特异性识别Mn
2+
的比率型荧光探针。在最优的条件下,该探针在9.0×10
-7
~1.5×10
-5
mol/L之间具有良好的线性范围,检出限为6.1×10
-8
mol/L。该探针得益于Mn
2+
介导的比率型荧光信号响应,使其具有出色的灵敏度、特异性以及稳定性,能进一步应用复杂生物样品中Mn
2+
的分析检测与细胞成像,对Mn
2+
介导cGAS-STING通路免疫调控分子机制的研究具有潜在的应用价值。
Manganese (Mn)
an essential trace element in the human body
plays critical roles in many biological processes. Recent studies have discovered that Mn
2+
may promote or directly activate the cGAS-STING pathway
thereby subsequently initiating the natural immune response and augmenting antitumor therapy. However
the current lack of accurate methods for Mn
2+
determination in cells significantly limits their mechanism investigation; hence
it is urgent to establish novel tools to detect Mn
2+
in cells. In this study
the dual-emission carbon dots were initially synthesized via the one-pot hydrothermal method employing
L
-aspartic acid and
p
-phenylenediamine as raw materials. In the presence of Mn
2+
the emission peak centered at 350 nm exhibited significant enhancement
whereas another peak at 610 nm remained stable. Consequently
a ratiometric sensor for Mn
2+
determination was established using the signal at 350 nm as the responsive signal and the signal at 610 nm as an internal reference. Under the optimal condition
a good linear relationship was achieved between the
F
350
/
F
610
value and Mn
2+
concentration ranging from 9.0×10
-7
to 1.5×10
-5
mol/L
with a calculated LOD of 6.1×10
-8
mol/L. Benefiting from the special Mn
2+
-induced ratiometric approach
this method demonstrates outstanding sensitivity
selectivity
and stability
rendering it applicable for Mn
2+
determination in complex biological samples
as well as Mn
2+
imaging in MKN-45 and LO2 cells.
Mn2+碳量子点比率型细胞成像荧光
Mn2+carbon dotsratiometriccell imagingfluorescence
BAI J, YUAN G, ZHU Y, et al, 2021. Study on the origin of fluorescence by using dual-emission carbon dots[J]. J Phys Chem C, 125(33): 18543-18551.
CAI L X, WANG Y, CHEN Y Y, et al, 2023. Manganese(II) complexes stimulate antitumor immunity via aggravating DNA damage and activating the cGAS-STING pathway[J]. Chem Sci, 14(16): 4375-4389.
CHAUDHARI K G, PATIL P O, NANGARE S N, et al, 2024. Exploring the significance of carbon quantum dots and graphene quantum dots in sarcosine sensing: A key biomarker for prognosticating prostate cancer[J]. Chem Select, 9(29): e202401643.
CHEN J, XIA X, LI P, et al, 2023. A facile “off-on” fluorescence sensor for pentachlorophenol detection based on natural N and S co-doped carbon dots from crawfish shells[J]. Food Chem, 405(30): 134802.
CHEN Y J, SUN J, LUO M P, et al, 2024. Quantifying the viability of lactic acid bacteria using ratiometric fluorescence assays[J]. Microchem J, 206: 111485.
DAS S, KHATUA K, RAKSHIT A, et al, 2019. Emerging chemical tools and techniques for tracking biological manganese[J]. Dalton Trans, 48(21): 7047-7061.
FAN H H, MCGHEE C E, LAKE R J, et al, 2023. A highly selective Mn(II)-specific DNAzyme and its application in intracellular sensing[J]. JACS Au, 3(6): 1615-1622.
GOSHISHT M K, TRIPATHI N, PATRA G K, et al, 2023. Organelle-targeting ratiometric fluorescent probes: Design principles, detection mechanisms, bio-applications, and challenges[J]. Chem Sci, 14(22): 5842-5871.
HORNING K J, CAITO S W, TIPPS K G, et al, 2015. Manganese is essential for neuronal health[J]. Annu Rev Nutr, 35(1): 71-108.
KWAKYE G, PAOLIELLO M, MUKHOPADHYAY S, et al, 2015. Manganese-induced parkinsonism and parkinson’s disease: shared and distinguishable features[J]. Int J Environ Res Public Health, 12(7): 7519-7540.
LI J, CEN Y, LI Y, 2018. The research advances in the mechanism of manganese-induced neurotoxicity[J]. Toxin Rev, 38(1): 54-60.
LIN S Q, JIA B Z, LUO W, et al, 2023. Controllable formation of polydopamine on carbon dots for ultrasensitive detection of alkaline phosphatase and ratiometric fluorescence immunoassay of benzocaine[J]. Food Chem, 426(15): 136582.
LV M, CHEN M, ZHANG R, et al, 2020. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy[J]. Cell Res, 30(11): 966-979.
MIZUNUMA M, SUZUKI M, KOBAYASHI T, et al, 2023. Development of Mn2+-specific biosensor using G-quadruplex-based DNA[J]. Int J Mol Sci, 24(14): 11556.
MOHAGHEGHPOUR E, FARZIN L, GHOORCHIAN A, et al, 2022. Selective detection of manganese (II) ions based on the fluorescence turn-on response via histidine functionalized carbon quantum dots[J]. Spectrochimi Acta A, 279(15): 121409.
NGEONTAE W, CHAIENDOO K, NGAMDEE K., et al, 2022. A highly selective fluorescent sensor for manganese (II) ion detection based on N, S-doped carbon dots triggered by manganese oxide[J]. Dyes Pigm, 203: 110325.
POURJAVID M R, ARABIEH M, YOUSEFI S R, et al, 2016. Interference free and fast determination of manganese(II), iron(III) and copper(II) ions in different real samples by flame atomic absorption spectroscopy after column graphene oxide-based solid phase extraction[J]. Microchem J, 129: 259-267.
SHI Y H, SHI Y, WANG Z Y, et al, 2023. Glucose-responsive mesoporous prussian blue nanoprobes coated with ultrasmall gold and manganese dioxide for magnetic resonance imaging and enhanced antitumor therapy[J]. Chen Eng J, 453: 139885.
TUERHONG M, YANG X, XUE B Y, 2017. Review on carbon dots and their applications[J]. Chinese J Anal Chem, 45(1): 139-150.
WANG F H, DONG X Z, ZUO Y J, et al, 2024. Effectively enhancing red fluorescence strategy and bioimaging applications of carbon dots[J]. Mater Today Phys, 41: 101332.
WANG Y, ZHANG C, CHEN X, et al, 2016. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions[J]. Nanoscale, 8(11): 5977-5984.
YU P, WEN X, TOH Y R, et al, 2012. Temperature-dependent fluorescence in carbon dots[J]. J Phys Chem C, 116(48): 25552-25557.
ZHANG J, CHEN Y, QI J, et al, 2024. A paper-based ratiometric fluorescence sensor based on carbon dots modified with Eu3+ for the selective detection of tetracycline in seafood aquaculture water[J]. Analyst, 149(5): 1571-1578.
ZHANG Y C, LI C J, SUN L B, et al, 2021. Defects coordination triggers red-shifted photoluminescence in carbon dots and their application in ratiometric Cr(VI) sensing[J]. Microchem J, 169: 106552.
ZHANG Z, SHANG C, ZHAO W, et al, 2022. 3,3′,5,5′-Tetramethylbenzidine and polyetherimide decorated silver nanoparticles for colorimetric Mn2+ ions detection in aqueous solution[J]. Chem Pap, 76(11): 7253-7260.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构