1.中山大学航空航天学院,广东 深圳 518107
2.深圳市智能微小卫星星座技术与应用重点实验室, 广东 深圳 518107
3.哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨 150001
雷玟(2001年生),女;研究方向:微波离子推力器;E-mail:leim8@mail2.sysu.edu.cn
沈岩(1978年生),男;研究方向:空间推进、微推进中的等离子体和流体控制; E-mail:shenyan8@mail.sysu.edu.cn
网络出版日期:2025-01-23,
收稿日期:2024-10-12,
录用日期:2024-12-15
移动端阅览
雷玟, 陈煜, 沈岩, 等. 微牛级微波离子推力器的推力特性[J/OL]. 中山大学学报(自然科学版)(中英文), 2025,1-11.
LEI WEN, CHEN YU, SHEN YAN, et al. Thrust characteristics of micro-newton microwave ion thrusters. [J/OL]. Acta scientiarum naturalium universitatis sunyatseni, 2025, 1-11.
雷玟, 陈煜, 沈岩, 等. 微牛级微波离子推力器的推力特性[J/OL]. 中山大学学报(自然科学版)(中英文), 2025,1-11. DOI: 10.13471/j.cnki.acta.snus.ZR20240301.
LEI WEN, CHEN YU, SHEN YAN, et al. Thrust characteristics of micro-newton microwave ion thrusters. [J/OL]. Acta scientiarum naturalium universitatis sunyatseni, 2025, 1-11. DOI: 10.13471/j.cnki.acta.snus.ZR20240301.
为了探究不同工况下微波离子推力器的推力特性,建立了微波离子推力器的推力估算模型。通过推力架试验测量推力并分析误差,探讨了工质流量、微波功率和屏栅电压对屏栅电流及推力的影响。研究结果表明:估算推力时,选择羽流发散修正系数为0.98、离子能量修正系数为1.02时可以修正估算模型。通过推力性能试验,可以发现栅极电压对推力的影响符合理论估算;微波功率和工质流量的增加主要影响放电室中氙原子的电离数量,促进电离反应的进行,从而影响推力器的推力性能。
This study establishes a theoretical thrust estimation model for microwave ion thrusters, conducts thrust measurements using a thrust stand, and analyzes errors of thrust. Additionally, it explores the effects of propellant flow rate, microwave power, and grid voltage on grid current and thrust. Results show that using a plume divergence correction coefficient of 0.98 and an ion energy correction coefficient of 1.02 improves the theoretical estimation model. Experimental investigations on thrust performance reveal that the influence of grid voltage aligns with theoretical predictions. Moreover, increasing microwave power and propellant flow rate significantly affects the ionization of xenon atoms in the discharge chamber,promoting ionization reactions and consequently impacting thrust performance.
引力波微波离子推力器推力特性试验
gravitational wavemicrowave ion thrusterthrust characteristicsexperiment
崔振江,周亮,胡少春,等, 2019.一种利用角动量进行电推力矢量标定的算法[J].中国空间科学技术,39(3):1-8.
胡展,杨涓,陈茂林,等, 2020.基于三维PIC数值模拟的2cm ECRIT推力控制计算[J].西北工业大学学报,38(4): 733-739.
黄宇飞, 2013. 基于实测数据的电推进器推力估计及绕飞轨道保持[D].哈尔滨:哈尔滨工业大学.
李斌, 2019. 会切场推力器噪声特性研究[D].哈尔滨:哈尔滨工业大学.
李娟, 2021. 交叉磁场杆天线电子回旋共振离子推进器离子束流特性研究[D].大连:大连理工大学.
刘勇,宋政吉,李林凌,等,2014.基于GNSS精密定轨的圆轨道切向小推力在轨标定方法:CN103940431A[P/OL].[2014-07-23].https://wenku.baidu.com/view/81f6ffcb0522192e453610661ed9ad51f11d549c.html?_wkts_=1736841931930https://wenku.baidu.com/view/81f6ffcb0522192e453610661ed9ad51f11d549c.html?_wkts_=1736841931930.
孟圣峰, 2020. 离子源电离室放电特性研究[D].哈尔滨: 哈尔滨工业大学.
力伯曼,里登伯格, 2011. 等离子体放电原理与材料处理[M]. 北京:科学出版社.
于博,黄浩,徐亚男,等, 2024. 磁场对霍尔推力器气体电离率的影响规律研究[J]. 推进技术,45(9):257-264.
于达仁,牛翔,王泰卜, 等, 2021. 面向空间引力波探测任务的微推进技术研究进展[J].中山大学学报(自然科学版),60(1/2):194-212.
颜能文,郭宁,吴辰宸, 等, 2021. 基于放电室均布模型的射频离子推力器研究[J].中国空间科学技术,41(3):1-8.
赵宝瑞,李晶,蒋金伟, 2000. 微小推力自动测量系统研究 [J]. 宇航计测技术,20(4):31-35.
赵以德,马伊帆,张雪儿, 等, 2023. 离子推力器研制及应用现状和启示[J]. 真空电子技术,(2):1-15.
张天平,耿海,张雪儿, 等,2019. 离子电推进技术的发展现状与未来[J]. 上海航天,36(6):88-96.
曾明, 2018. 微牛级会切场等离子体推力器设计及实验研究 [D]. 哈尔滨:哈尔滨工业大学.
郑茂繁,张天平,孟伟, 等, 2019. 20cm氙离子推力器性能扩展研究[J]. 推进技术,36(7):1116-1120.
祝竺,赵艳彬,尤超蓝, 等, 2022.面向空间引力波探测的非接触式卫星平台无拖曳控制技术[J]. 南京航空航天大学学报, 54(S1):9-13.
AMARO-SEOANE P, AUDLEY H, BABAK S, et al, 2017. Laser interferometer space antenna[EB/OL].arXiv:1702.00786.
CANUTO E, ROLINO A, 2004. Nanobalance: An automated interferometric balance for micro-thrust measurement [J]. ISA trans,43(2):169-187.
CHAKRABORTY S, COURTNEY D G, SHEA H, 2015. A 10nN resolution thrust-stand for micro-propulsion devices [J]. Rev Sci Instrum,86(11):115109.
CHEN, S S, YUE F Z, JIANG Y,et al,2014. Study on onboard enginethrust-estimation based on GNSS precision orbit determination technology[C]//China Satellite Navigation Conference. Nanjing, China.
CYRANOSKI D, 2016. Chinese gravitational-wave hunt hits crunch time[J]. Nature,531(7593):150-151.
DEBRA D B,2003. Drag-free control for fundamental physics missions [J]. Adv Space Res,32(7):1221-1226.
DIAMANT K D, POLLARD J E, CROFTON M W, et al, 2011. Thrust stand characterization of the NASA evolutionary xenon thruster[J]. J Propuls Power,27(4): 777-785.
DRINKWATER M R , FLOBERGHAGEN R, HAAGMANS R,et al, 2003. GOCE: ESA's first earth explorer core mission[M]. Space Sciences Series of ISSI: 419-432.
FUNAKI I, NAKAYAMA Y, HORISAWA H, et al,2011. Micro-thruster options for the Japanese space gravitational wave observatory missions[C]//32nd International Electric Propulsion Conference. Kurhaus of Wiesbaden,Germany.
GUO H, WU J, 2010. Space science & technology in China: A roadmap to 2050[M]. Springer.
HU P, LIU H, GAO Y, et al, 2016. Study on the structure and transition of the hollow plume in a multi-cusped field thruster [J]. Phys Plasmas, 23(10):103517.
IZUMI T, KOIZUMI H, YAMAGIWA Y, et al, 2012. Performance of miniature microwave discharge ion thruster for drag-free control[C]// 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Atlanta, Georgia, USA.
KAWAMURA S, ANDO M, SETO N, et al, 2011. The Japanese space gravitational wave antenna: DECIGO[J]. Class Quantum Gravity, 28(9): 094011.
KELLER A, KÖHLER P, GÄRTNER W, et al, 2014. Feasibility of a down-scaled HEMP thruster[M]. Springer Verlag .
KOIZUMI H, KAWAHARA H, YAGINUMA K, et al, 2015. In-flight operation of the miniature propulsion system installed on small space probe: Procyon[C]//The Joint Conference of 30th ISTS, 34th IEPC, and 6th NSAT.Kobe, Japan
KOIZUMI H, KOMURASAKI K, AOYAMA J, et al, 2018. Development and flight operation of a miniature ion propulsion system[J]. J Propuls Power,34(4):960-968.
KUNINAKA H,SATORI S,1998.Development and demonstration of a cathodeless electron cyclotron resonance ion thruster[J].J Propuls Power,14(6):1022-1026.
LI J, MEI H W, WANG G, 2013. The micro-thrust automatic measurement system of stationary plasma thruster [C]//The International Symposium on Precision Engineering Measurements and Instrumentation.Guangzhou, China.
MENG S F, ZHU X M, YU D R, 2023. A minimized electron cyclotron resonance ion thruster for China’s space-borne gravitational wave detection missions[J]. Class Quantum Gravity,40(17):175006.
TANI Y, TSUKIZAKI R, KODA D, et al, 2019. Performance improvement of the μ10 microwave discharge ion thruster by expansion of the plasma production volume[J]. Acta Astronaut, 157: 425-434.
WANG B, YANG W, TANG H, et al, 2018. Target thrust measurement for applied-field magnetoplasmadynamic thruster [J]. Meas Sci Technol, 29(7): 075302.
WU S F, STEYN W H, BORDANY R E, 2004. In-orbit thruster calibration techniques and experiment results with UoSAT-12 [J]. Contr Eng Pract,12(1):87-98.
ZENG M, LIU H, CHEN Z, et al, 2021. Preliminary experimental characterization of a microwave discharge cusped field thruster [J]. Vacuum,192:110486.
ZHOU W J, HONG Y J, CHANG H, 2013. A microNewton thrust stand for average thrust measurement of pulsed microthruster [J]. Rev Sci Instrum,84(12):125115.
ZIEMER J, MERKOWITZ S, 2004. Microthrust propulsion for the LISA mission[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Fort Lauderdale, Florida.
ZOU S, CHENG Z, ZHANG X, et al, 2023. Ground-vibration suppression by a matched center of mass for microthrust testing in spaceborne gravitational-wave detection [J]. Phys Rev Applied,19(2):024040.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构