1.长安大学建筑工程学院,陕西 西安 710064
2.岩土力学与工程国家重点实验室/中国科学院武汉岩土力学研究所,湖北 武汉 430071
3.中铁第四勘察设计院集团有限公司,湖北 武汉 430063
网络出版日期:2025-01-23,
录用日期:2024-10-22
移动端阅览
孟超, 高志华, 黄珏皓, 等. 长江一级阶地软土地层HSS模型参数的敏感性分析及反演[J/OL]. 中山大学学报(自然科学版)(中英文), 2025,1-9.
MENG CHAO, GAO ZHIHUA, HUANG JUEHAO, et al. Sensitivity analysis and inversion of HSS model parameters for soft soil layers on the first terrace of the Yangtze River. [J/OL]. Acta scientiarum naturalium universitatis sunyatseni, 2025, 1-9.
孟超, 高志华, 黄珏皓, 等. 长江一级阶地软土地层HSS模型参数的敏感性分析及反演[J/OL]. 中山大学学报(自然科学版)(中英文), 2025,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240264.
MENG CHAO, GAO ZHIHUA, HUANG JUEHAO, et al. Sensitivity analysis and inversion of HSS model parameters for soft soil layers on the first terrace of the Yangtze River. [J/OL]. Acta scientiarum naturalium universitatis sunyatseni, 2025, 1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240264.
依托武汉市某深基坑工程,采用PLAXIS 2D软件建立数值模型,分析黏性土和砂性土HSS模型参数的敏感性;对长江一级阶地软土地层的敏感性进行评估,并对显著敏感的参数进行反演。首先,对黏性土和砂性土HSS模型部分参数进行敏感性分析,研究了对隧道拱顶沉降影响最为显著的参数;然后,对长江一级阶地软土地层进行敏感性分析,确定待反演的力学参数;最后,结合既有隧道拱顶沉降的监测数据,通过确定性正反演法对待反演的力学参数进行反演。结果表明:无论是黏性土还是砂性土,对隧道拱顶沉降影响最为显著的参数均为小应变参考初始剪切模量(
G
<math id="M1"><msubsup><mrow/><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790135&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790138&type=
2.03200006
);长江一级阶地软土地层中,对既有隧道变形影响显著的地层为粉细砂层和细砂层;反演获得的粉细砂层
G
<math id="M2"><msubsup><mrow/><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790136&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790139&type=
2.03200006
为90 MPa,细砂层
G
<math id="M3"><msubsup><mrow/><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790136&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790139&type=
2.03200006
为120 MPa。
Based on a deep foundation pit project in Wuhan,we establishe a numerical model using the PLAXIS 2D, analyze the sensitivity of HSS model parameters for cohesive and sandy soils, evaluate the sensitivity of soft soil layers in the first terrace of the Yangtze River, and invert the significantly sensitive parameters. Firstly, the sensitivity analysis of certain parameters of the HSS model for cohesive and sandy soils is conducted, focusing on the parameters that most significantly affect the settlement of the tunnel crown. Then, the sensitivity analysis of the soft soil layers in the first terrace of the Yangtze River is carried out to determine the soil mechanical parameters to be inverted. Finally, combining the existing tunnel crown settlement monitoring data, the inversion of the soil mechanical parameters to be inverted is conducted using a deterministic forward-inverse method.The results show that for both cohesive and sandy soils, the parameter that most significantly affects the tunnel crown settlement is the small-strain reference initial shear modulus(
G
<math id="M4"><msubsup><mrow/><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790140&type=
4.48733330
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790137&type=
2.28600001
). In the soft soil layers of the first terrace of the Yangtze River, the layers that significantly affect the deforma
tion of the existing tunnel are the silty fine sand layer and the fine sand layer. The inverted
G
<math id="M5"><msubsup><mrow/><mrow><mn mathvariant="normal">0</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790141&type=
4.48733330
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=72790142&type=
2.28600001
values for the silty fine sand layer and the fine sand layer are 90 MPa and 120 MPa, respectively.
HSS模型深基坑工程数值模拟参数敏感性分析反演
HSS modeldeep excavation engineeringnumerical simulationparametersensitivity analysisinversion
陈益峰,周创兵,2002. 基于正交设计的复杂坝基弹塑性力学参数反演[J].岩土力学,4:450-454.
冯晓腊,熊宗海,莫云,等,2014. 复杂条件下基坑开挖对周边环境变形影响的数值模拟分析[J].岩土工程学报,36(S2):330-336
李国英,2024.为以中国式现代化全面推进强国建设、民族复兴伟业提供有力的水安全保障——在2024年全国水利工作会议上的讲话[J].水利发展研究,24(1):1-10.
李云鹏,韩常领,唐明明,等,2008. 小间距隧道围岩力学参数正交设计反演[J].公路交通科技,9:107-111.
李肇桀,张旺,刘璐,2024.大力发展新质生产力 助推水利高质量发展——关于水利行业发展新质生产力的认识和思考[J].水利发展研究,24(6):1-6.
刘志祥,张海清,2015. PLAXIS高级应用教程[M].北京:机械工业出版社.
罗敏敏,陈赟,周江,2021. 小应变土体硬化模型参数取值研究现状与展望[J].工业建筑,51(4):172-180.
吕庆,尚岳全,陈允法,等,2005. 高填方路堤粘弹性参数反演与工后沉降预测分析[J].岩石力学与工程学报,7:1231-1235.
施有志,阮建凑,吴昌兴,2017. 厦门地区典型地层HS-Small模型小应变参数敏感性分析[J].科学技术与工程,17(2):100-105.
王开禾,罗先启,沈辉,等,2016. 围岩力学参数反演的GSA-BP神经网络模型及应用[J].岩土力学,37(S1):631-638.
王卫东,王浩然,徐中华,2013. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J].岩土力学,34(6):1766-1774.
王迎超,尚岳全,徐兴华,2011. 浅埋隧道岩土体参数正交反演及衬砌工作状态评价[J].中南大学学报(自然科学版),42(6):1764-1771.
谢凌志,李胤铎,林旭明,等,2011. 基于地铁站基坑工程施工过程的场地土参数动态反演[J].四川大学学报(工程科学版),43(5):19-26.
徐中华,王卫东,2010. 敏感环境下基坑数值分析中土体本构模型的选择[J].岩土力学,31(1):258-264+326.
尹骥,2010. 小应变硬化土模型在上海地区深基坑工程中的应用[J].岩土工程学报,32(S1):166-172.
朱合华,杨林德,桥本正,1998. 深基坑工程动态施工反演分析与变形预报[J].岩土工程学报,4:33-38.
左其亭,王子尧,马军霞,2024.我国现代治水研究热点与发展展望[J].水利发展研究,24(6):13-19.
BENZ T, 2006. Small strain stiffness of soils and its numerical consequences[D]. Stuttgart,USA:University of Stuttgart.
KAVANAGH K T, CLOUGH R W , 1971. Finite element applications in the characterization of elastic solids [J]. Int J Solids Struct,7(1):11-23.
LI H, CHEN W, TAN X, 2023. Displacement-based back analysis of mitigating the effects of displacement loss in underground engineering[J].J Rock Mech Geotech, 15(10): 2626-2638.
SU H Z, WEN Z P, ZHANG S, et al. 2016. Method for choosing the optimal resource in back-analysis for multiple material parameters of a dam and its foundation[J]. J Comput Civil Eng,30(4):4015060.
ZHANG J, 2019. Finite element analysis of ultra-deep foundation pit covered top-down excavation based on PLAXIS[C]//IOP Conference Series:Earth and Environmental Science. IOP Publishing,300(2):022158.
ZHAO Y, FENG S J , 2021. Back analysis of surrounding rock parameters of tunnel considering displacement loss and space effect[J].Bull Eng Geol Environ, 80(7): 5675-5692.
ZHENG F, JIANG A, GUO X, et al, 2022. Back analysis of surrounding rock parameters of large-span arch cover station based on GP-DE algorithm[J].Appl Sci, 12(24): 12590.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构