1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
2.新疆干旱区湖泊环境与资源实验室,新疆 乌鲁木齐 830054
3.保山学院资源环境学院,云南 保山 678000
金晓亮(1998年生),男;研究方向:自然资源开发与规划;E-mail:jinxiao1310@163.com
孙慧兰(1982年生),女;研究方向:自然资源开发与规划;E-mail:huilsunxjnu@sina.com
网络出版日期:2024-09-27,
收稿日期:2024-05-20,
录用日期:2024-06-18
移动端阅览
金晓亮, 孙慧兰, 叶茂, 等. 伊犁河流域植被覆盖时空变化趋势及驱动力[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-14.
JIN Xiaoliang, SUN Huilan, YE Mao, et al. The spatiotemporal change trends and driving forces of vegetation coverage in the Ili River Basin[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-14.
金晓亮, 孙慧兰, 叶茂, 等. 伊犁河流域植被覆盖时空变化趋势及驱动力[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-14. DOI: 10.13471/j.cnki.acta.snus.ZR20240167.
JIN Xiaoliang, SUN Huilan, YE Mao, et al. The spatiotemporal change trends and driving forces of vegetation coverage in the Ili River Basin[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-14. DOI: 10.13471/j.cnki.acta.snus.ZR20240167.
伊犁河流域作为中亚保存最完好的干旱半干旱区生态景观之一,其植被覆盖影响区域的生态平衡和气候变化。本文基于MODIS NDVI数据集和像元二分模型,Hurst指数和BFAST模型对2001—2022年伊犁河流域植被覆盖度(FVC)时空变化和持续性进行分析。结果得出:1) 伊犁河流域近22年期间植被覆盖总体上呈波动上升趋势,平均植被覆盖度为0.18,以较低植被覆盖为主。植被分布具有很大的空间差异性,上游和中游植被覆盖度明显高于下游区域。2) BFAST模型分析表明伊犁河流域植被覆盖增加和退化分别占比47.3%和52.7%,植被退化趋势略微高于植被增长趋势,Hurst指数表明未来植被呈正向增加趋势和逆向减少趋势分别占比62.42%和16.84%。BFAST模型和Hurst指数耦合叠加17种结果分析得出植被覆盖未来趋势,总体上呈正向增加趋势(65.22%)占比大于逆向减少(15.07%)和占比19.71%的区域无法预测(不确定)。整体上未来植被呈正向增加趋势。3) 基于地理探测器模型分析表明,整个流域降水和气温对植被覆盖影响最大,对于各个子区域而言,上游地区地形以河谷为主,主要影响因子为海拔高低,中游地区以气温和GDP两个因素为主,下游地区以气温和降水为主。本文研究结果对伊犁河流域生态环境平衡和未来植被变化趋势提供科学技术支持。
The Ili River Basin is one of the best-preserved arid and semi-arid ecological landscapes in Central Asia, its vegetation coverage affects the regional ecological balance and climate change. Based on the MODIS NDVI dataset and the binary pixel model, the Hurst index and BFAST model are used to analyze the spatiotemporal changes and persistence of the Fractional Vegetation Cover (FVC) in the Ili River Basin from 2001 to 2022. The results are as follows: 1) Over the past 22 years, the vegetation coverage in the Ili River Basin has generally shown a fluctuating upward trend. The average vegetation coverage from 2001 to 2022 was 0.18, with low vegetation coverage being the main feature. The distribution of vegetation has significant spatial variability, with the vegetation coverage in the upstream and midstream areas being significantly higher than that in the downstream areas. 2) The BFAST model analysis shows that the increase and degradation of vegetation coverage in the Ili River Basin accounted for 47.3% and 52.7% respectively. The trend of vegetation degradation is slightly higher than that of vegetation growth. The Hurst index indicates that the future vegetation increasing trend accounts for 62.42% while the decreasing trend accounts for 16.84%. The superposition of 17 results from the BFAST model and Hurst index analysis shows that the future trend of vegetation coverage has an increasing trend of 65.22%, which is much greater than the decreasing trend (15.07%) and the unpredictable areas of 19.71%. Overall, the future vegetation shows an increasing trend. (3) Geodetector-based analyses show that precipitation, and temperature have the greatest influence on vegetation cover in the whole basin. For each sub-region, the topography of the upper reaches is dominated by river valleys, and the main influencing factor is altitude; while in the middle reaches, temperature and GDP are two dominant factors; in the lower reaches, temperature and precipitation are dominant. The results of this paper provide scientific and technical support for the ecological balance of the Ili River Basin and future trends in vegetation change.
植被覆盖像元二分模型Hurst指数BFAST模型伊犁河流域
vegetation coveragepixel bisection modelHurst indexBFAST modelIli River Basin
丁文荣. 2016. 滇中地区植被NDVI时空演变特征及其驱动因素[J].水土保持通报,36(6):252-257.
冯金杰, 张辉国, 胡锡健, 等. 2016. 降水量和温度对植被覆盖指数影响的空间非平稳性特征——以新疆伊犁河谷地区为例[J].生态学报,36(15):4626-4634.
冯莉莉, 何贞铭, 刘学锋, 等. 2014. 基于MODIS-NDVI数据的吉林省植被覆盖度及其时空动态变化[J]. 中国科学院大学学报, 31(4):492-499+536.
郝鑫怡, 张喆, 郑浩, 等, 2024. 天山北坡经济带植被覆盖度动态变化研究[J].中国环境科学, 44(2):1020-1031.
金红梅, 颜鹏程, 柏庆顺, 等, 2019. 近70a来中亚极端高温事件时空分布[J].干旱气象,37(4):550-556.
李加顺, 刘丽. 2023. 2000—2020年云南省植被时空变化及影响因素分析[J].草地学报,31(11):3503-3513.
梁红闪, 王丹, 郑江华, 2020. 伊犁河流域地表蒸散量时空特征分析[J].灌溉排水学报,39(7):100-110.
刘春静, 2016. 中亚干旱区植被退化及典型流域生态环境遥感监测[D].泰安:山东农业大学.
刘亮, 关靖云, 穆晨, 等, 2022. 2008-2018年伊犁河流域植被净初级生产力时空分异特征[J].生态学报,42(12):4861-4871.
刘天弋, 孙慧兰, 卢宝宝, 等, 2023. 1998—2018年新疆伊犁河谷植被覆盖度时空变化及驱动力[J]. 东北林业大学学报,51(4):68-74+79.
塞米热·吾斯曼, 杨涵, 钟瑞森,等,2024. 伊犁河三角洲植被覆盖度时空变化特征及影响因素[J/OL].水生态学杂志, DOI:10.15928/j.1674-3075.202312150382http://dx.doi.org/10.15928/j.1674-3075.202312150382.
王春雅, 王金牛, 崔霞等, 2021. 藏东南三江并流核心区植被时空动态变化及其气候驱动力分析[J].地理研究,40(11):3191-3207.
王洪亮, 冯爱萍, 高彦华, 等, 2018. 伊犁河流域最大植被覆盖度的时空动态变化[J].环境科学与技术,41(6):161-167.
王姣妍, 路京选, 2009. 伊犁河流域水资源开发利用的水文及生态效应分析[J]. 自然资源学报, 24(7): 1297-1307.
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J].地理学报,72(1):116-134.
肖笃宁, 陈文波, 郭福良, 2002. 论生态安全的基本概念和研究内容[J].应用生态学报,13(3):354-358.
徐虹, 刘琴, 2022. 2001—2019年云南省植被NDVI变化及其气候因子的关系[J].水土保持研究, 29(1):162-168.
钟旭珍, 王金亮, 邓云程, 等, 2023. 怒江-萨尔温江流域植被覆盖时空变化趋势及驱动力研究[J].生态学报,43(24):10182-10201.
BAI P, LIU X, ZHANG Y ,et al, 2020. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China.[J].Water Resour Res, 56(10):2019WR027019.
BRAKHASI F, HAJEB M, MIELONEN T, et al, 2021.Investigating aerosol vertical distribution using CALIPSO time series over the Middle East and North Africa (MENA),Europe, and India;A BFAST-based gradual and abrupt change detection[J].Remote Sens Environ,264: 112619.
CAPARROS-SANTIAGO J A, RODRIGUEZ-GALIANO V, DASH J, 2021. Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review[J]. ISPRS-J Photogramm Remote Sens,171:330-347.
CHEN S , HUANG Y, WANG G, 2021. Detecting drought-induced GPP spatiotemporal variabilities with Sun-induced chlorophyll fluorescence during the 2009/2010 droughts in China.[J].Ecol Indic, 121:107092.
GENG S, ZHANG H, XIE F, et al, 2022. Vegetation dynamics under rapid urbanization in the Guangdong-Hong Kong-Macao greater bay area urban agglomeration during the past two decades[J]. Remote Sens,14(16): 3993.
GONÇALVES N B, LOPES A P, DALAGNOL R, et al, 2020. Both near-surface and satellite remote sensing confirm drought legacy effect on tropical forest leaf phenology after 2015/2016 ENSO drought[J].Remote Sens Environ,237: 111489.
HE J, LYU D, HE L,et al, 2022, Combining object-oriented and oeep oearning oethods to ostimate photosynthetic and non-photosynthetic vegetation cover in the desert from unmanned aerial vehicle images with consideration of shadows.[J].Remote Sens,15(1):105.
HIGGINBOTTOM T P, SYMEONAKIS E, 2020. Identifying ecosystem function shifts in Africa using breakpoint analysis of long-term NDVI and RUE data[J].Remote Sens,12(11): 1894.
KANG W, WANG T, LIU S, 2018. The response of vegetation phenology and productivity to drought in semi-arid regions of northern China[J]. Remote Sens, 10 (5): 727.
LI L H, ZHANG Y L, LIU Q H, et al, 2019. Regional dilerenees in shits of temperaure trends acrss China between 1980 and 2017[J].Int J Climatol, 39(3): 1157-1165.
LI J, WANG J, ZHANG J, et al, 2022. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Ecomomic Coridor based on Google Earth Engine and geographic detector[J]. Ecol Indic,136: 108620.
LI J G, WANG J L, ZHANG J, et al, 2021. Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20 years[J].Int J Appl Earth Obs Geoinf,102 :102378.
MENDES M P, RODRIGUEZ-GALIANO V, ARAGONES D, 2022. Evaluating the BFAST method to detect and characterise changing trends in water time series:A case study on the impact of droughts on the Mediterranean climate[J].Sci Total Environ,846: 157428.
MORELLATO L, ALBERTON B, ALVARADO S T, et al, 2016. Linking plant phenology to conservation biology[J]. Biol Conserv, 195: 60-72.
PENUELAS J, RUTISHAUSER T, FILELLA I, 2009. Phenology feedbacks on climate change[J].Science, 324(5929):887-888.
R CORE TEAM. 2018. R: A Language and Environment for Statistical Computing, Vienna[CP/OL]. https://www.R-project.orghttps://www.R-project.org.
VERBESSELT J, HYNDMAN R, ZEILEIS A, et al, 2010. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J].Remote Sens Environ, 114(12): 2970-2980.
VERBESSELT J, ZEILEIS A, HEROLD M, 2012. Near real-time disturbance detection using satellite image time series[J].Remote Sens Environ, 123: 98-108.
WANG C, LI Z, CHEN Y, et al, 2022. Increased compound droughts and heatwaves in a double pack in central asia[J]. Remote Sens,14(13): 2959.
YAN K, GAO S, CHI H J,et al, 2022. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation[J].IEEE Trans Geosci Remote Sens, 60: 4400514.
YANG S, SONG S, LI F, et al, 2022. Vegetation coverage changes driven by a combination of climate change and human activities in Ethiopia,2003-2018[J].Ecol Inform, 71: 101776.
ZHONG X Z, LI J, WANG J, et al, 2022. Linear and nonlinear characteristics of long-term NDVl using trend analysis : A case stud of lancang-mekong river basin[J].Remote Sens,14:6271.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构