中山大学生命科学学院,广东 广州510275
罗剑文(1972年生),女;研究方向:组学仪器技术;E-mail:luojw@mail.sysu.edu.cn
网络出版日期:2024-07,
收稿日期:2024-04-03,
录用日期:2024-06-20
扫 描 看 全 文
罗剑文, 钟创光, 刘羿飞, 等. UFLC-QTOF-MS/MS分析噁唑酰草胺及其在生物体内的代谢产物[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9.
LUO Jianwen, ZHONG Chuangguang, LIU Yifei, et al. Analysis of matamifop and its metabolic products in biological systems via UFLC-QTOF-MS/MS[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9.
罗剑文, 钟创光, 刘羿飞, 等. UFLC-QTOF-MS/MS分析噁唑酰草胺及其在生物体内的代谢产物[J/OL]. 中山大学学报(自然科学版)(中英文), 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240099.
LUO Jianwen, ZHONG Chuangguang, LIU Yifei, et al. Analysis of matamifop and its metabolic products in biological systems via UFLC-QTOF-MS/MS[J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024,1-9. DOI: 10.13471/j.cnki.acta.snus.ZR20240099.
采用超高效液相色谱-四极杆串联飞行时间质谱(UFLC-QTOF-MS/MS)技术,以黄粉
虫幼虫(
Tenebrio molitor
)作为模式生物,探索了一种在缺乏全面代谢物标准品的情况下发现和积累噁唑酰草胺(metamifop)代谢物色谱-质谱特征数据的新方法,并构建出噁唑酰草胺在黄粉虫中的代谢途径。研究显示从连续15 d定量摄食含噁唑酰草胺2 mg/g药饵的黄粉虫粪便提取物中发现了21种代谢产物,包括14种Ⅰ相代谢产物和7种Ⅱ相代谢产物。在Ⅰ相代谢产物中除单氧化噁唑酰草胺、精噁唑禾草酸、6-CBO、HPFMPA、HPPA和HFMPA已报道外,其余8种均为首次在生物体内发现。并发现这些I相代谢产物至少通过与氨基酸结合、与葡萄糖硫酸酯结合以及与硫酸酯结合3种途径进一步转化为相应的Ⅱ相代谢产物。
Utilizing ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UFLC-QTOF-MS/MS) technology, and employing the larvae of mealworm (
Tenebrio molitor
) as a model organism, this study developed a new approach to discover and accumulate chromatographic-mass spectrometric characteristic data of metamifop metabolites in the absence of comprehensive metabolite standards. The metabolic pathway of metamifop in
T. molitor
was further elucidated. The study identified 21 metabolites in the excreta of mealworms larvae that were fed a diet containing 2 mg/g of metamifop over a period of 15 days. These included 14 phase I metabolites and 7 phase Ⅱ metabolites. Among the phase I metabolites, beside the reported compounds such as Metamifop monooxide, Fenoxaprop acid, 6-CBO, HPFMPA, HPPA, and HFMPA, eight were identified for the first time in any biological system. It was also observed that these phase I metabolites underwent transformation into corresponding phase Ⅱ metabolites through three primary pathways: Conjugation with amino acids, glucose-sulfate esterification, and sulfation.
噁唑酰草胺(metamifop)黄粉虫(Tenebrio molitor)代谢产物超高效液相色谱-四极杆串联飞行时间质谱(UFLC-QTOF-MS/MS)
metamifopTenebrio molitormetaboliteUFLC-QTOF-MS/MS
董振霖, 杨春光, 徐天, 等, 2022. 液相色谱-四极杆/飞行时间质谱法分析29种芬太尼类物质及其碎裂机理[J]. 色谱, 40(1): 28-40.
郭鸿钦, 罗丽萍, 杨宇航, 等, 2020. 利用昆虫取食降解塑料研究进展[J]. 应用与环境生物学报, 26(6): 1546-1553.
黄昕, 张超, 周翠兰, 等, 2014. 基于UFLC-Q-TOF-MS/MS技术的盐酸克林霉素棕榈酸酯分散片杂质的研究[J]. 中山大学学报(自然科学版), 53(4): 101-106.
林涛, 曾兆华, 朱珍珍, 等, 2019.10%噁唑酰草胺乳油对3种水生生物的急性毒性和风险评价[J]. 福建农林大学学报(自然科学版), 48(4): 418-422.
罗傲, 陈恒辉, 熊胜, 等, 2020. 液相色谱-串联质谱法检测水稻中噁唑酰草胺及其代谢物残留[J]. 精细化工中间体, 50(3): 77-80.
罗雪琪, 李娜, 张丹, 等, 2020. 噁唑酰草胺在蛋鸡排泄物中代谢产物研究[J]. 农药科学与管理, 41(5): 48-59.
王点点, 陈源, 宋宁慧, 等, 2012. 10%噁唑酰草胺可湿性粉剂在稻田环境中的残留动态[J]. 农药, 51(11): 818-821.
杨静, 牛艳, 吴燕, 等, 2021. 噁唑酰草胺及其代谢物在水稻上的残留检测方法和储藏稳定性研究[J]. 保鲜与加工, 21(10): 108-112.
张琪,胡安琪,范倩,等,2021. 基于UPLC-Q-TOF-MS的柑普茶外果皮、鲜陈皮和鲜砂糖橘皮的全成分对比分析[J].中山大学学报(自然科学版), 60(6): 128-141.
张月, 2020. 超高效液相色谱-串联质谱法测定水稻中噁唑酰草胺残留量[J]. 中国农学通报, 36(9): 127-131.
曾仲武, 姜雅君, 2004. 新稻田除草剂metamifop[J]. 农药, 43(7): 2.
左平春, 臧晓霞, 陈仕红, 等, 2016. 稻稗对噁唑酰草胺的非靶标抗药性和对氰氟草酯的交互抗药性[J]. 杂草学报, 34(4): 28-32.
BARIK S R, GANGULY P, PATRA S, et al, 2018. Persistence behavior of metamifop and its metabolite in rice ecosystem [J]. Chemosphere, 193: 875-882.
DENG W, CAI J, ZHANG J, et al, 2019. Molecular basis of resistance to ACCase-inhibiting herbicide cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) from China[J]. Pestic Biochem Physiol, 158: 143-148.
DONG W, LIU K, WANG F, et al, 2017. The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure[J]. Biodegradation, 28(2/3): 181-194.
HAMAMOTO H, KUROKAWA K, KAITO C, et al, 2004. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms [J]. Antimicrob Agents Chemother, 48(3): 774-9.
KAUNDUN S S, 2014. Resistance to acetyl-CoA carboxylase-inhibiting herbicides [J]. Pest Manag Sci, 70(9): 1405-1417.
LV X T, LIU C, LI Y B, et al, 2014. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae [J]. Ecotoxicol Environ Saf, 107: 71-76.
McCULLOUGH P E, YU J L, CZARNOTA M A, et al, 2016. Physiological basis for metamifop selectivity on bermudagrass (Cynodon dactylon) and goosegrass (Eleusine indica) in cool-season turfgrasses [J]. Weed Sci, 64(1): 12-24.
MOON J K, KIM J H, SHIBAMOTO T, 2010. Photodegradation pathways and mechanisms of the herbicide metamifop in a water/acetonitrile solution[J]. J Agric Food Chem, 58(23): 12357-12365.
ZHAO F, LI H, CAO F J, et al, 2019. Short-term developmental toxicity and potential mechanisms of the herbicide metamifop to zebrafish (Danio rerio) embryos [J]. Chemosphere, 236: 124590.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构