中北大学数学学院,山西 太原 030051
桑彦彬(1979年生),男; 研究方向:非线性泛函分析; E-mail: sangyanbin@nuc.edu.cn
收稿日期:2024-01-21,
录用日期:2024-05-28,
网络出版日期:2024-07-25,
纸质出版日期:2025-03-15
移动端阅览
桑彦彬,蔚艳,史娜.一类带有对数项的临界Choquard方程组的基态解[J].中山大学学报(自然科学版)(中英文),2025,64(02):138-147.
SANG Yanbin,YU Yan,SHI Na.Ground state solutions of a class of critical Choquard systems with logarithmic terms[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(02):138-147.
桑彦彬,蔚艳,史娜.一类带有对数项的临界Choquard方程组的基态解[J].中山大学学报(自然科学版)(中英文),2025,64(02):138-147. DOI: 10.13471/j.cnki.acta.snus.ZR20240032.
SANG Yanbin,YU Yan,SHI Na.Ground state solutions of a class of critical Choquard systems with logarithmic terms[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(02):138-147. DOI: 10.13471/j.cnki.acta.snus.ZR20240032.
考虑一类Choquard型耦合方程组,其中非线性项含有对数项和Hardy-Littlewood-Sobolev临界指数. 当对数项的系数均为负值时,借助单个临界Choquard方程相应的局部极小点的存在性,建立了该系统对应能量泛函在Nehari流形中Palais-Smale序列的收敛性,进而利用Ekeland变分原理,获得了其具有极小能量的正解存在性. 同时在对参数施加与线性问题相关的第一特征值的限制条件下,构造了上述系统具有负能量水平的非负解的存在性. 本文的结果扩展了对数项系数为正值的情形,分析了系数的负性对能量泛函几何结构的影响,是对经典Sobolev临界系统在Choquard算子上的推广和延伸.
A class of Choquard type coupled systems are considered, where Hardy-Littlewood-Sobolev critical exponents and logarithmic terms are contained in nonlinear terms. If the coefficients of logarithmic terms are both negative, Palais-Smale sequences of the energy functional corresponding to above problems in Nehari manifold are established by using of the existence on a local minima of single critical Choquard equation. Furthermore, by adopting Ekeland’s variational principle, some restricted conditions under which the parameters are related to the first eigenvalue of linear operator with Dirichlet boundary conditions are given. The nonnegative solution with negative energy level of above systems is obtained. Our work generalizes the cases that the coefficients of logarithmic terms are positive, and analyzes the impact of negative coefficients on geometry structure of the energy functional. In fact, our results extend classical Sobolev critical systems to the corresponding Choquard problems.
ALVES C O , FIGUEIREDO G M , MOLLE R , 2021 . Multiple positive bound state solutions for a critical Choquard equation [J]. Discrete Contin Dyn Syst , 41 ( 10 ): 4887 - 4919 .
CINGOLANI S , GALLO M , TANAKA K , 2022 . On fractional Schrödinger equations with Hartree type nonlinearities [J]. Math Eng , 4 ( 6 ): 2022056 .
DENG Y B , HE Q H , PAN Y Q , et al , 2023 . The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation [J]. Adv Nonlinear Stud , 23 ( 1 ): 20220049 .
GAO F S , YANG M B , 2018 . The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J]. Sci China Math , 61 ( 7 ): 1219 - 1242 .
GENG Q P , TU Y Y , WANG J , 2022 . Existence and multiplicity of the positive normalized solutions to the coupled Hartree-Fock type nonlocal elliptic system [J]. J Fixed Point Theory Appl , 24 : 83 .
GHIMENTI M , Van SCHAFTINGEN J , 2016 . Nodal solutions for the Choquard equation [J]. J Funct Anal , 271 ( 1 ): 107 - 135 .
GIACOMONI J , MUKHERJEE T , SREENADH K , 2018 . Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity [J]. J Math Anal Appl , 467 ( 1 ): 638 - 672 .
HAJAIEJ H , LIU T H , SONG L J , et al , 2024a . Positive solution for an elliptic system with critical exponent and logarithmic terms [J]. J Geom Anal , 34 ( 6 ): 182 .
HAJAIEJ H , LIU T H , ZOU W M , 2024b . Positive solution for an elliptic system with critical exponent and logarithmic terms: The higher-dimensional cases [J]. J Fixed Point Theory Appl , 26 : 11 .
HE Q H , HE Y , LV J T , 2023 . The existence of positive solutions to the Choquard equation with critical exponent and logarithmic term [J]. J Math Anal Appl , 519 ( 1 ): 126737 .
LI Q , HAN Y Z , WANG T L , 2023 . Existence and nonexistence of solutions to a critical biharmonic equation with logarithmic perturbation [J]. J Differ Equ , 365 : 1 - 37 .
LI X F , 2023 . Nonexistence, existence and symmetry of normalized ground states to Choquard equations with a local perturbation [J]. Complex Var Elliptic Equ , 68 ( 4 ): 578 - 602 .
SANG Y B , 2021 . Critical Kirchhoff-Choquard system involving the fractional p -Laplacian operator and singular nonlinearities [J]. Topol Methods Nonlinear Anal , 58 ( 1 ): 233 - 274 .
XIA J K , ZHANG X , 2021 . Saddle solutions for the critical Choquard equation [J]. Calc Var Partial Differ Equ , 60 : 53 .
YOU S , ZHAO P H , WANG Q X , 2019 . Positive ground states for coupled nonlinear Choquard equations involving Hardy-Littlewood-Sobolev Critical Exponent [J]. Nonlinear Anal , Real World Appl, 48 : 182 - 211 .
ZHANG H , ZHANG J J , ZHONG X X , 2023 . Normalized solutions for critical Choquard sytems [EB/OL]. arXiv : 2307 . 01483 . http://arxiv.org/abs/2307.01483 http://arxiv.org/abs/2307.01483
ZHANG Q , HAN Y Z , WANG J , 2023 . A note on a critical bi-harmonic equation with logarithmic perturbation [J]. Appl Math Lett , 145 : 108784 .
ZHENG Y , SANTOS C A , SHEN Z F , et al , 2020 . Least energy solutions for coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents [J]. Commun Pure Appl Anal , 19 ( 1 ): 329 - 369 .
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构