1.中山大学航空航天学院,广东 深圳 518107
2.深圳市智能微小卫星星座技术与应用重点实验室,广东 深圳 518107
田立丰(1979年生),男;研究方向:空气动力学;E-mail:tianlf5@mail.sysu.edu.cn
纸质出版日期:2025-01-15,
网络出版日期:2024-10-14,
收稿日期:2024-05-31,
录用日期:2024-06-11
移动端阅览
田立丰,付双旭.面向高速流场成像的聚焦纹影研究进展[J].中山大学学报(自然科学版)(中英文),2025,64(01):238-249.
TIAN Lifeng,FU Shuangxu.Advances in focusing schlieren technology for high-speed flow field imaging[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(01):238-249.
田立丰,付双旭.面向高速流场成像的聚焦纹影研究进展[J].中山大学学报(自然科学版)(中英文),2025,64(01):238-249. DOI: 10.13471/j.cnki.acta.snus.ZR20240182.
TIAN Lifeng,FU Shuangxu.Advances in focusing schlieren technology for high-speed flow field imaging[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2025,64(01):238-249. DOI: 10.13471/j.cnki.acta.snus.ZR20240182.
相较于传统的光学流动可视化技术,聚焦纹影技术能对非聚焦区域的流场信息进行模糊化处理,从而反映窄景深内的流场信息,具有高空间分辨率、抗干扰能力强、无需播撒示踪粒子、低成本等特点,这些特点使得聚焦纹影十分适用于高速流场的流动显示和流场测量。本文在对聚焦纹影系统成像的基本原理进行介绍的基础上,以传统聚焦纹影在格栅对准和非定常流动多平面测量方面面临的挑战为出发点,总结了聚焦纹影的国内外相关研究,并进一步展望了聚焦纹影的未来发展。
Compared to traditional optical flow visualization technology, focusing schlieren technology can blur the flow field information in the non-focused region to reflect the flow field information in a narrow depth of field. It possesses high spatial resolution, strong anti-interference ability, does not require tracer particles for broadcasting,and is cost-effective. These characteristics enable focusing schlieren highly suitable for high-speed flow display and flow field measurement. Based on the introduction of the basic principle of focusing schlieren imaging system, this paper summarizes the research progress of focusing schlieren at home and abroad based on the challenges faced by traditional focusing schlieren in grid alignment and unsteady flow multi-plane measurement, and further looks forward to the future development of focusing schlieren.
聚焦纹影流动显示流场成像
focusing schlierenflow visualizationflow field imaging
田立丰, 2011. 超声速光学头罩流场精细结构及其气动光学效应的机理研究[D]. 长沙:国防科学技术大学.
席锋, 秦华锋, 胡莉, 等, 2021. 可视化聚焦纹影系统实现流场中的三维扰动成像[J].光学学报, 41(9): 0911003.
谢爱民, 黄洁, 徐翔, 等 , 2013. 激波风洞流场密度测量的聚焦纹影技术[J]. 实验流体力学,27(2): 82-86.
谢爱民, 部绍清, 罗锦阳, 2018.基于光源拼接的大视场聚焦纹影技术初步研究[J].实验流体力学, 32(6): 68-73.
易仕和, 田立丰, 赵玉新, 等, 2011. 基于NPLS技术的可压缩湍流机理实验研究新进展[J].力学进展, 41(4): 379-390.
岳茂雄, 田野, 张弯洲, 等, 2021a. 凹腔燃烧截面波系及温度场同步显示研究[J].推进技术,42(9): 2022-2027.
岳茂雄, 张弯洲, 吴运刚, 等, 2021b. 基于发散光反射式布局的大视场显示方法研究[J].实验流体力学,35(3): 77-82.
周芮旭, 连欢, 顾洪斌, 等,2020. 激光诱导荧光聚焦纹影系统及超声速燃烧流场应用[J]. 气体物理,5(2):14-19.
AHMAD A, KUMAR A, DUBEY V, et al, 2019. Characterization of color cross-talk of CCD detectors and its influence in multispectral quantitative phase imaging[J]. Opt Express, 27(4): 4572-4589.
AHMED K A, WILEY A, 2017. Structured light-field focusing for flowfield diagnostics[J]. Exp Therm Fluid Sci, 89: 110-118.
ALVAREZ-HERRERA C, MORENO-HERNÁNDEZ D, BARRIENTOS-GARCÍA B, et al, 2009. Temperature measurement of air convection using a schlieren system[J]. Opt Laser Technol, 41(3): 233-240.
ALVI F, SETTLES G, WEINSTEIN L,1993. A sharp-focusing schlieren optical deflectometer[C]//Proceedings of the 31st Aerospace Sciences Meeting. Reston,Virginia,USA: AIAA:629.
BATHEL B F, WEISBERGER J M, 2021. Compact,self-aligned focusing schlieren system [J]. Opt Lett, 46(14): 3328-3331.
BATHEL B F, WEISBERGER J M,2022. Development of a self-aligned compact focusing Schlieren system for NASA test facilities[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston, Virginia,USA:AIAA:0560.
BATHEL B F, WEISBERGER J M, PAGE W E, et al, 2024. Digital self-aligned focusing schlieren[J]. Opt Lett, 49(4): 778-781.
BUCKNER B D, TROLINGER J D, L’ESPERANCE D, 2015. Digital focusing schlieren imaging[C]//Applied Advanced Optical Metrology Solutions. San Diego,California,USA:SPIE: 59-66.
BUCKNER B D, L’ESPERANCE D, 2019. Schlieren unwrapped: Distortion correction in digital focusing schlieren[C]//Applied Optical Metrology III. San Diego,California,USA: SPIE: 189-197.
CAUTY F, ERADES C,2012. Tracking of aluminum particles burning in solid propellant combustion gases by focusing schlieren technique[C]//Proceeding of the 15th International Symposium on Flow Visualization. Reston,Virginia,USA:AIAA:0156.
CHOI Y J, GRAY M D, SIROHI J, et al,2017. Measurement of velocity induced by a propagating arc magneto-hydrodynamic plasma actuator[C]//Proceeding of the 55th AIAA Aerospace Sciences Meeting. Reston,Virginia,USA:AIAA:0156.
DANSEREAU D G, PIZARRO O, WILLIAMS S B,2013. Decoding, calibration and rectification for lenselet-based plenoptic cameras[C]// IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE:1027-1034.
DANSEREAU D G, PIZARRO O, WILLIAMS S B, 2015. Linear volumetric focus for light field cameras[J]. ACM Trans Graph, 34(2):1-15+20.
DOGGETT G P, CHOKANI N, 1993. Large-field laser holographic focusing schlieren system[J]. J Spacecr Rockets,30(6): 742-748.
DOWNIE J D, 1995. Application of bacteriorhodopsin films in an adaptive-focusing schlieren system[J]. Applied optics, 34(26): 6021-6028.
DOWNIE J D, SMITHEY D T, 1996. Measurements of holographic properties of bacteriorhodopsin films[J]. Applied optics, 35(29): 5780-5789.
DUANE C B, 1971. Close-range camera calibration[J]. Photogramm Eng, 37(8): 855-866.
DUONG N T, TAGUCHI M, KASHITANI M, et al,2022. An experimental investigation of busemann biplane in transonic flow by focusing schlieren technique[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston, Virginia,USA:AIAA:0769.
FAGAN A F, L’ESPERANCE D, ZAMAN K Q,2014. Application of a novel projection focusing schlieren system in NASA test facilities[C]//30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, Virginia,USA:AIAA: 2522.
FÖRSTER F J, DRÖSKE N C, BÜHLER M N, et al, 2016. Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization[J]. Combust Flame, 168: 204-215.
GOULDING J S,2006. A study of large-scale focusing schlieren systems[D]. https://wiredspace.wits.ac.za/items/b72c81c8-ef23-4403-83e0-bf32025af630https://wiredspace.wits.ac.za/items/b72c81c8-ef23-4403-83e0-bf32025af630.
HARGATHER M J, LAWSON M J, SETTLES G S, et al, 2009. Focusing-schlieren PIV measurements of a supersonic turbulent boundary layer[C]//Proceeding of the 47th AIAA Aerospace Sciences Meeting. Reston, Virginia,USA:AIAA: 69.
HILL J L, BORG M P, BENITEZ E K, et al,2023. Implementation of self-aligned focusing schlieren for hypersonic boundary layer measurements[C]//Proceedings of the AIAA SCITECH 2023 Forum. Reston, Virginia,USA:AIAA: 2438.
JEON H G, PARK J, CHOE G, et al,2015. Accurate depth map estimation from a lenslet light field camera[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE: 1547-1555.
KASHITANI M, NAKAO S, MIYAZATO Y, 2019. Basic experiment on focusing schlieren piv method with LED light source[C]//Proceedings of the 31st International Symposium on Shock Waves . Cham: Springer: 435-441.
KERTH P, HERMANN T, MCGILVRAY M, 2019. Three-dimensional focusing schlieren using a plenoptic camera[C]//International Conference on Flight Vehicles, Aerothermodynamics, Re-entry Missions and Engineering. ESA Conference Bureau.
KOUCHI T, GOYNE C P, ROCKWELL R D, et al, 2015. Focusing-schlieren visualization in a dual-mode scramjet[J]. Exp Fluids, 56(12): 1-14.
L’ESPERANCE D, BUCKNER B D, 2017. Focusing schlieren systems using digitally projected grids[C]//Applied Optical Metrology II. San Diego,USA:SPIE: 204-213.
LEVOY M, NG R, ADAMS A, et al,2006. Light field microscopy[M]. ACM Sig Graph 2006 Papers. Boston,Massachasetts,USA: ACM: 924-934.
LEVOY M, HANRAHAN P, 2023. Light field rendering[M].Seminal Graphics Papers: Pushing the Boundaries.New York, NY, USA: ACM: 441-452.
LUCY L B,1974. An iterative technique for the rectification of observed distributions[J]. Astron J,79: 745.
MARTÍNEZ-GONZÁLEZ A, MORENO-HERNÁNDEZ D, GUERRERO-VIRAMONTES J A,et al,2018. Temperature measurement of fluid flows by using a focusing schlieren method[J]. Sensors, 19(1): 12.
MARTÍNEZ-GONZÁLEZ A, MORENO-HERNÁNDEZ D, GUERRERO-VIRAMONTES J A, et al, 2021. Multiplane temperature measurement of fluid flows using a color focusing schlieren system[J]. Opt Laser Technol, 142: 107256.
MEJIA N, SCHMIDT B E,2023. ATLAS: Assistive tool for self-aligning schlieren[C]//Proceedings of the AIAA SCITECH 2023 Forum. Reston, Virginia,USA:AIAA: 2265.
NG R,2005. Fourier slice photography[J]. ACM Trans Graph, 24(3): 735-744.
NG R, LEVOY M, BRÉDIF M, et al, 2005. Light field photography with a hand-held plenoptic camera[D]. Stanford, CA: Stanford university.
ORTH A, CROZIER K B, 2013. Light field moment imaging[J]. Opt lett,38(15): 2666-2668.
OZAWA R W, COX T J, REYES J, et al,2018. Structured light-field focusing 3D density measurements of a supersonic cone[C]//Proceedings of the 56th Aerospace Sciences Meeting. Reston, Virginia,USA:AIAA:0410.
PASSMANN M, DER WIESCHE SAUS, JOOS F, 2020. Focusing schlieren visualization of transonic turbine tip-leakage flows[J].Int J Turbomach Propuls Power,5(1): 1.
PREVEDEL R, YOON Y G, HOFFMANN M, et al, 2014. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J]. Nat Methods, 11(7): 727-730.
RICHARDSON W H,1972. Bayesian-based iterative method of image restoration[J]. JOSA, 62(1): 55-59.
SCHOEGL I, PISANO A J, SEDKY G,2016. Development of a compact focusing color schlieren technique[C]//Proceedings of the 54th Aerospace Sciences Meeting. Reston, Virginia,USA:AIAA: 1765.
SETTLES G S, 2001. Schlieren and shadowgraph techniques: Visualizing phenomena in transparent media[M]. Berlin:Springer Science & Business Media.
TAO M W, HADAP S, MALIK J, et al,2013. Depth from combining defocus and correspondence using light-field cameras[C]//International Conference on Computer Vision. Sydney, NSW, Australia: IEEE: 673-680.
VEERARAGHAVAN A, RASKAR R, AGRAWAL A, et al, 2007. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing[J]. ACM Trans Graph, 26(3): 69.
WEINSTEIN L M, 2010. Review and update of lens and grid schlieren and motion camera schlieren[J]. Eur Phys J Spec Top, 182(1): 65-95.
WEISBERGER J M, BATHEL B F, 2022. Single source/cutoff grid, self-aligned focusing schlieren system[J]. Exp Fluids, 63(1): 38.
WEISBERGER J M, BATHEL B F, 2023. Colinear focused laser differential interferometry and self-aligned focusing schlieren[J]. Applied Optics, 62(18): 4958-4970.
ZHENG G, HORSTMEYER R, YANG C, 2013. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nat Photonics, 7(9): 739-745.
0
浏览量
125
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构